Tiểu luận Năng lượng hạt nhân- Vấn đề toàn cầu

Cuộc sống của chúng ta trên trái đất hiện nay đang dựa vào các quá trình không tái tạo, luôn gắn liền với việc sản xuất và tiêu thụ với nhịp độ ngày càng cao điện năng và các dạng nhiên liệu khác nhau do nhu cầu của cuộc sống. Trữ lượng khai thác các nhiên liệu này như dầu mỏ, khí tự nhiên, than , dù có lớn đến đâu thì cũng đến lúc phải cạn kiệt. Đến lúc đó cuộc sống của con người rồi sẽ ra sao? Trước tình hình đó, không ít các nhà khoa học đã tìm đến nguồn năng lượng hạt nhân và khẳng định hạt nhân chính là giải pháp hữu hiệu nhất cho vấn đề khủng hoảng năng lượng trên Trái Đất; hạt nhân là giải pháp bảo vệ môi trường, là cách giảm khí thải gây hiệu ứng nhà kính. Ngành năng lượng hạt nhân phát triển sẽ cho phép dành riêng nguồn hữu cơ cho việc thỏa mãn nhu cầu nhân loại về năng lượng hóa học, sinh học và nhiều năng lượng khác Ngược lại, có những ý kiến chống đối lại lên án các lò phản ứng hạt nhân là nguy cơ tiềm tàng dẫn đến chỗ phá hủy môi trường sống. Mặc dù năng lượng hạt nhân mang lại hiệu quả kinh tế cao nhưng các Chính phủ đều biết hiểm hoạ nếu có sự cố xảy ra. Vì vậy, những người ủng hộ và phản đối sử dụng năng lượng hạt nhân vẫn tiếp tục có những tranh luận về vấn đề này và dường như khó đạt được sự đồng thuận. Những người ủng hộ cho rằng: năng lượng hạt nhân hầu như không phát tán chất gây nhiễm không khí vì ít chất thải hơn nhiều so với các nhà máy chạy bằng nhiên liệu than, khí, dầu mà hiệu quả kinh tế lại hơn nhiều. Ngược lại, những người tham gia chiến dịch chống hạt nhân quả quyết rằng lợi ích về chi phí không là gì so với các mối lo ngại về an toàn liên quan đến chất thải hạt nhân trước mắt cũng như lâu dài, ảnh hưởng đến tính mạng con người. Tóm lại “Năng lượng hạt nhân- Vấn đề toàn cầu” - vấn đề nóng bỏng hiện nay, đã được không ít các nhà khoa học và sinh viên quan tâm. Tôi chọn đề tài này với hy vọng sẽ đáp ứng được phần nào nhu cầu đó của các bạn.

doc27 trang | Chia sẻ: ngtr9097 | Lượt xem: 5259 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Tiểu luận Năng lượng hạt nhân- Vấn đề toàn cầu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC PHẦN 1 . MỞ ĐẦU 1./ Lý do chọn đề tài: Cuộc sống của chúng ta trên trái đất hiện nay đang dựa vào các quá trình không tái tạo, luôn gắn liền với việc sản xuất và tiêu thụ với nhịp độ ngày càng cao điện năng và các dạng nhiên liệu khác nhau do nhu cầu của cuộc sống. Trữ lượng khai thác các nhiên liệu này như dầu mỏ, khí tự nhiên, than…, dù có lớn đến đâu thì cũng đến lúc phải cạn kiệt. Đến lúc đó cuộc sống của con người rồi sẽ ra sao? Trước tình hình đó, không ít các nhà khoa học đã tìm đến nguồn năng lượng hạt nhân và khẳng định hạt nhân chính là giải pháp hữu hiệu nhất cho vấn đề khủng hoảng năng lượng trên Trái Đất; hạt nhân là giải pháp bảo vệ môi trường, là cách giảm khí thải gây hiệu ứng nhà kính. Ngành năng lượng hạt nhân phát triển sẽ cho phép dành riêng nguồn hữu cơ cho việc thỏa mãn nhu cầu nhân loại về năng lượng hóa học, sinh học và nhiều năng lượng khác… Ngược lại, có những ý kiến chống đối lại lên án các lò phản ứng hạt nhân là nguy cơ tiềm tàng dẫn đến chỗ phá hủy môi trường sống... Mặc dù năng lượng hạt nhân mang lại hiệu quả kinh tế cao nhưng các Chính phủ đều biết hiểm hoạ nếu có sự cố xảy ra. Vì vậy, những người ủng hộ và phản đối sử dụng năng lượng hạt nhân vẫn tiếp tục có những tranh luận về vấn đề này và dường như khó đạt được sự đồng thuận. Những người ủng hộ cho rằng: năng lượng hạt nhân hầu như không phát tán chất gây nhiễm không khí vì ít chất thải hơn nhiều so với các nhà máy chạy  bằng nhiên liệu than, khí, dầu mà hiệu quả kinh tế lại hơn nhiều. Ngược lại, những người tham gia chiến dịch chống hạt nhân quả quyết rằng lợi ích về chi phí không là gì so với các mối lo ngại về an toàn liên quan đến chất thải hạt nhân trước mắt cũng như lâu dài, ảnh hưởng đến tính mạng con người... Tóm lại “Năng lượng hạt nhân- Vấn đề toàn cầu” - vấn đề nóng bỏng hiện nay, đã được không ít các nhà khoa học và sinh viên quan tâm. Tôi chọn đề tài này với hy vọng sẽ đáp ứng được phần nào nhu cầu đó của các bạn. 2./ Đối tượng nghiên cứu: Trong đề tài này ta đi sâu tìm hiểu 3 vấn đề lớn: + Những kiến thức cơ bản về năng lượng hạt nhân + Vì sao năng lượng hạt nhân được đánh giá là nguồn năng lượng của tương lai. + Vì sao nó cũng là mối nguy hiểm với con người. 3./ Mục đích và nhiệm vụ: a./ Mục đích: + Trang bị cho bản thân những kiến thức cơ bản về hạt nhân nguyên tử. + So sánh thế mạnh, tác hại mà năng lượng hạt nhân mang lại; để từ đó đưa ra cách phát triển, giải quyết và khắc phục nguồn năng lượng này. b./ Nhiệm vụ: Tìm hiểu quá trình hình thành, phát triển, và cấu tạo của hạt nhân để có thể hiểu hơn về cơ chế hoạt động của các nhà máy điện nguyên tử. 4./ Phạm vi nghiên cứu: + Các vấn đề về năng lượng hạt nhân. + Tìm hiểu 1 số nhà máy điện hạt nhân nguyên tử. + Xu hướng phát triển điện hạt nhân trên thế giới và ở Việt nam. 5./ Phương pháp nghiên cứu: + Phương pháp đọc sách và nghiên cứu tài liệu. + Phương pháp nghiên cứu và tổng hợp lý thuyết. + Phương pháp tìm tài liệu trực tuyến trên internet. PHẦN 2. NỘI DUNG A./ ĐẠI CƯƠNG VỀ NĂNG LƯỢNG HẠT NHÂN I./ Lịch sử năng lượng hạt nhân: Lịch sử của năng lượng hạt nhân khởi đầu với việc xây dựng mô hình nguyên tử. Năm 1912, nhà vật lý Ernest Rutherford (1871 - 1937) người Anh, sau khi phát hiện ra hạt nhân nguyên tử đã cùng với nhà vật lý Niels Bohr (1885 - 1962) người Đan Mạch đề xuất một mô hình nguyên tử: Nguyên tử gồm một hạt nhân tích điện dương được bao quanh bởi các electron. Năm 1913, Rutherford phát hiện ra proton. Năm 1932, nhà vật lý James Chadwick (1891 - 1974) người Anh phát hiện ra nơtron. Năm 1939, nhà vật lý Frederic Joliot-Curie (1900 - 1958) người Pháp cùng với các trợ lý là Lew Kowaski và Hans Von Halban đã chứng minh rằng hiện tượng phân rã hạt nhân (phân hạch) urani kéo theo sự toả nhiệt rất lớn. Việc phát hiện ra phản ứng dây chuyền sau này cho phép khai thác năng lượng hạt nhân. Trong thời gian Đại chiến thế giới lần thứ II (1939-1945), các nghiên cứu về hiện tượng phân hạch được tiếp tục tiến hành ở Mỹ. Kế hoạch Mahattan được phát động với mục đích chế tạo vũ khí hạt nhân mà hệ quả là các vụ nổ hạt nhân (bom nguyên tử) ở hai thành phố Hiroshima và Nagasaki (Nhật Bản) vào tháng 8 năm 1945. Ngay sau chiến tranh, những nghiên cứu về năng lượng phân hạch được tiếp tục tiến hành để sử dụng vào mục đích dân sự; phục vụ nghiên cứu, y tế, năng lượng, công nghiệp, an ninh và quốc phòng… II./ Kiến thức cơ bản: 1./ Cấu tạo hạt nhân: - Theo giả thiết của Ivanenko-Haidenbec đưa ra năm 1932 thì hạt nhân nguyên tử cấu tạo bởi hai loại hạt sau: Proton (ký hiệu: p) là hạt mang điện dương, về trị số tuyệt đối bằng điện tích nguyên tố e của electron (1,6.10-19C ), có khối lượng nghỉ mp=1,67252.10-27 kg. Nơ tron (ký hiệu: n) là hạt không mang điện, có khối lượng nghỉ mn=1,67482.10-27 kg. - Hai loại hạt proton và notron có tên gọi chung là nuclon. Số proton trong hạt nhân bằng số thứ tự Z của nguyên tử trong bảng tuần hoàn Mendeleep. Điện tích của hạt nhân là +Ze. Tổng số các nuclon trong hạt nhân gọi là số khối lượng (ký hiệu: A ). Như vậy số notron trong hạt nhân là: N=A-Z. Người ta thường ký hiệu hạt nhân nguyên tử là . Trong nguyên tử, hầu như toàn bộ khối lượng đều tập trung ở hạt nhân vì khối lượng của các electron là quá bé so với khối lượng hạt nhân. Có thể coi hạt nhân nguyên tử như một quả cầu bán kính R. ( R phụ thuộc vào số khối theo công thức: R=1,2.10-15A1/3 (m) ). - Trong hạt nhân, các nuclon tương tác nhau bằng lực hút, gọi là lực hạt nhân. Lực hạt nhân không phài là lực tĩnh điện, vì nó không phụ thuộc vào điện tích của nuclon. So với lực điện từ và lực hấp dẫn, lực hạt nhân có cường độ rất lớn (còn gọi là lực tương tác mạnh) và chỉ có tác dụng khi hai nuclon cách nhau một khoảng rất ngắn, bằng hoặc nhỏ hơn kích thước hạt nhân. Điều đó có nghĩa là, bán kính tác dụng của lực hạt nhân khoảng 10-15 m. Muốn tách nuclon ra khỏi hạt nhân, cần phải tốn năng lượng để thắng lực hạt nhân. 2./ Quan hệ giữa năng lượng và khối lượng : - Bằng những kỹ thuật chính xác, người ta có thể đo khối lượng của một hạt nhân, của một proton hoặc một nơtron riêng lẻ. Người ta đã chứng minh rằng khối lượng m của hạt nhân bao giờ cũng nhỏ hơn khối lượng tổng của các nuclon một lượng: =Zmp +(A-Z)mn, m được gọi là độ hụt khối của hạt nhân. - Theo định luật bảo toàn khối lượng, đây là vấn đề không thể chấp nhận được. Vậy khối lượng thiếu hụt đó đi đâu? - Thực ra khối lượng đó không mất đi, mà tồn tại ở dạng năng lượng. Công thức nổi tiếng của Albert Einstein (1879 - 1955): E = mc2 cho phép xác định năng lượng này. Trong công thức này, E là năng lượng, m là khối lượng, và c là vận tốc ánh sáng trong chân không (300.000 km/s). - Trong trường hợp thiếu hụt khối lượng nêu trên, năng lượng tương ứng bằng độ hụt khối nhân với c2. Năng lượng này được gọi là năng lượng liên kết, có giá trị bằng năng lượng cần cung cấp cho hạt nhân để tách nó ra thành các nucleon riêng rẽ: - Năng lượng liên kết đối với một nucleon (tương ứng với mức thiếu hụt khối lượng đối với nucleon đó) được gọi là năng lương liên kết riêng và không cùng giá trị đối với các hạt nhân. Năng lượng liên kết riêng này đặc trưng cho độ bền vững của hạt nhân. Năng lượng đó nhỏ đối với các hạt nhân nhẹ (ví dụ như: natri, nhôm); tăng dần lên cho đến các hạt nhân trung bình vào khoảng 56 (sắt), sau đó giảm dần. Điều đó chứng tỏ rằng các nguyên tử liên kết chặt chẽ nhất là các nguyên tử trung bình. Do đó, tất cả những biến đổi có xu hướng tạo ra các hạt nhân trung bình cho phép giải phóng năng lượng hạt nhân. Những sự biến đổi ấy gọi là phản ứng hạt nhân. 3./ Phản ứng hạt nhân: Phản ứng hạt nhân là một quá trình vật lý, trong đó xảy ra tương tác mạnh của hạt nhân với một hạt nhân khác hoặc với một nuclon, qua quá trình này hạt nhân nguyên tử thay đổi trạng thái ban đầu (thành phần, năng lượng...) hoặc tạo ra hạt nhân mới hay các hạt mới(các tia phóng xạ) và giải phóng năng lượng. Chính nhờ các phản ứng hạt nhân mà con người ngày càng hiểu biết sâu sắc hơn về cấu trúc vi mô của thế giới vật chất muôn hình muôn vẻ. Ví dụ: Bắn phá hạt nhân nguyên tử Liti (6Li) bằng hạt hydro (2H) được 2 nguyên tử Heli (4He) và giải phóng 22,4 MeV. 6Li + 2H → 2 4He + 22,4 MeV Trong đó: mLi = 6,015 u, mHe = 4,0026 u và mH = 2,014 u (u: đơn vị khối lượng nguyên tử). chênh lệch khối lượng: Δm = mLi + mH - 2.mHe = 0,0238 u → năng lượng giải phóng = năng lượng chênh lệch: ΔE = Δm.c2 = 22,4MeV . - Có hai loại phản ứng hạt nhân giải phóng năng lượng: a./ Phản ứng nhiệt hạch : Phản ứng nhiệt hạch hay tổng hợp nhiệt hạch là việc kết hợp các hạt nhân nhẹ để tạo nên các hạt nhân nặng hơn. Phản ứng này kéo theo sự giải phóng năng lượng rất lớn. Ví dụ: Phản ứng này tỏa ra năng lượng khoảng 18 MeV. Phản ứng nhiệt hạch rất khó thực hiện, bởi các hạt nhân đều là những hạt tích điện dương, muốn cho chúng kết hợp được với nhau thì ta phải cung cấp cho chúng một động năng đủ lớn để thắng được lực đẩy Cu-lông giữa chúng. Đó là trường hợp khi chúng bị đưa lên nhiệt độ rất cao. Chính vì phản ứng xảy ra ở nhiệt độ rất cao nên nó có tên là phản ứng nhiệt hạch. * Tổng hợp trong tự nhiên: Hình A.1 Sự phân hạch của Trong tự nhiên, tổng hợp hạt nhân tồn tại trong các môi trường có nhiệt độ cực cao ở các ngôi sao, ví dụ như mặt trời. Bên trong mặt trời, nhiệt độ lên tới hàng chục triệu độ cho phép xảy ra sự tổng hợp các hạt nhân nhẹ như hạt nhân hyđrô thành hạt nhân hêli: . Những phản ứng nhiệt hạch này giải phóng rất nhiều năng lượng, điều này giải thích vì sao nhiệt độ mặt trời rất cao. Chỉ một phần nhỏ của năng lượng bức xạ từ mặt trời đi đến trái đất. Trên những ngôi sao có khối lượng lớn hơn mặt trời, nhiệt độ còn cao hơn nữa cho phép tổng hợp những hạt nhân nặng hơn hyđrô. Những hạt nhân đó tạo nên các hạt nhân của cacbon, oxy và cả của sắt nữa trong lòng các ngôi sao nóng nhất. * Tổng hợp trên trái đất: Trên trái đất, con người đã thực hiện được phản ứng nhiệt hạch dưới dạng không kiểm soát được. Đó là sự nổ của bom nhiệt hạch (bom khinh khí hay bom H - Bom hidro). Vì năng lượng tỏa ra trong phản ứng nhiệt hạch là rất lớn, và vì nhiên liệu nhiệt hạch có thể coi là vô tận trong tự nhiên, nên vấn đề đặt ra là làm thế nào thực hiện được phản ứng nhiệt hạch dưới dạng kiểm soát được, để đảm bảo cung cấp năng lượng lâu dài cho nhân loại. * Hai hướng nghiên cứu trong phòng thí nghiệm: - Với nồng độ nhỏ, hỗn hợp đồng vị khí hyđro (đơteri và triti) có thể chứa được bên trong những vách ngăn vô hình tạo nên bởi từ trường. Các hạt nhân được đưa lên nhiệt độ trên 100 triệu độ trong thiết bị tổng hợp kiểu Tokamak. - Với nồng độ lớn, hỗn hợp đồng vị hyđro được chứa trong một viên bi rất nhỏ được chiếu bởi những chùm tia laser rất mạnh. b./ Phân hạch và phản ứng dây chuyền : Phân hạch xảy ra khi một hạt nhân nặng (ví dụ hạt nhân nguyên tử) bị va đập bởi một nơtron thì tách thành hai hạt nhân nhỏ hơn. Phản ứng phân hạch hạt nhân – còn gọi là phản ứng phân rã nguyên tử - là một quá trình vật lý hạt nhân và hoá học hạt nhân mà trong đó hạt nhân nguyên tử bị phân chia thành hai hoặc nhiều hạt nhân nhỏ hơn và vài sản phẩm phụ khác. Sự phân hạch của các nguyên tố nặng( ví dụ ) là một phản ứng toả nhiệt và có thể giải phóng một lượng năng lượng đáng kể dưới dạng tia gama và động năng của các hạt được giải phóng; đồng thời có hai hoặc ba nơtron được tạo ra. Các nơtron này đến lượt chúng lại gây ra sự phân hạch của các hạt nhân khác và quá trình đó cứ thế tiếp diễn. Như vậy là xuất phát từ một sự phân hạch trong khối urani, nếu ta không khống chế các nơtron, thì có thể sinh ra ít nhất là hai sự phân hạch, rồi 4, 8, 16, 32 . Những phân hạch thành chuỗi như vậy được gọi là phản ứng dây chuyền. Hai ứng dụng chủ yếu của phản ứng dây chuyền là lò phản ứng hạt nhân và bom hạt nhân. Trong lò phản ứng hạt nhân, phản ứng dây chuyền được giữ ổn định ở mức đã định, có nghĩa là một phần lớn nơtron bị bắt giữ lại, để không sinh ra phân hạch. Mỗi lần phân hạch chỉ cần một nơtron gây ra một phân hạch mới để giải phóng năng lượng liên tục.Nhiên liệu phân hạch trong phần lớn các lò phản ứng hạt nhân là hay .Còn đối với bom hạt nhân, phản ứng dây chuyền phải thật mạnh trong thời gian ngắn nhất. B./ NĂNG LƯỢNG HẠT NHÂN I./ Năng lượng hạt nhân: Nguồn năng lượng của tương lai Trong khi nhu cầu sử dụng nguồn năng lượng phục vụ sản xuất đời sống ngày càng cao, nguồn nguyên liệu hoá thạch, dầu thô, than đá, khí đốt... ngày càng khan hiếm, giá cả ngày càng tăng buộc nhiều Chính phủ tìm đến nguồn năng lượng hạt nhân thay thế cho các nguồn nguyên liệu khác. Giá trị kinh tế đem lại từ năng lượng hạt nhân không nhỏ nên các Chính phủ vẫn xác định năng lượng hạt nhân vẫn là nguồn năng lượng của tương lai. 1./ Năng lượng hạt nhân-giải quyết các vấn đề môi trường, kinh tế, tình trạng “khát” năng lượng. Hiện nay giá dầu thô đang ở mức cao, vấn đề khí thải do sử dụng nhiên liệu hoá thạch ở các nhà máy nhiệt điện để sản xuất điện cũng là một trở ngại. Theo nghị định thư Kyoto được ký năm 1997, đến năm 2010 các nước công nghiệp hoá sẽ phải giảm 5,2% tổng lượng khí gây hiệu ứng nhà kính so với năm 1990 vì những khí này bị nghi là gây nên hiện tượng ấm lên toàn cầu. Chính vì những lý do trên đã đe doạ đến an ninh năng lượng, làm thiệt hại về kinh tế đối với nhiều nước. Phụ thuộc nguồn dầu mỏ, khí đốt, than đá từ bên ngoài buộc Chính phủ các nước phải suy nghĩ nghiêm túc đến nguồn năng lượng hạt nhân. Theo báo cáo thường niên của IAEA, năm 2003 năng lượng hạt nhân đã cung cấp 16% sản lượng điện toàn cầu. Vào cuối năm 2003, trên toàn thế giới có 439 nhà máy điện hạt nhân đã đi vào hoạt động. Độ an toàn của các nhà máy điện hạt nhân, các thiết bị có liên quan liên tục được tăng cường, cho nên sự cố về phát điện hạt nhân trên toàn thế giới xảy ra không đáng kể. Vấn đề: Mặc dù năng lượng hạt nhân mang lại hiệu quả kinh tế cao nhưng các Chính phủ đều biết hiểm hoạ nếu có sự cố xẩy ra. Vì vậy, những người ủng hộ và phản đối sử dụng năng lượng hạt nhân vẫn tiếp tục có những tranh luận về vấn đề này và dường như khó đạt được sự đồng thuận. 2./ Nhà máy điện nguyên tử: Hình B.1 Nhà máy điện hạt nhân a./ Khái niệm: Nhà máy điện nguyên tử hay nhà máy điện hạt nhân là một nhà máy tạo ra điện năng ở quy mô công nghiệp, sử dụng năng lượng thu được từ phản ứng hạt nhân. Các loại máy điện nguyên tử phổ biến hiện nay thực tế là nhà máy nhiệt điện, chuyển tải nhiệt năng thu được từ phản ứng phân hủy hạt nhân thành điện năng. Khi quá trình sản xuất và xử lý chất thải được bảo đảm an toàn cao, nhà máy điện nguyên tử sẽ có thể sản xuất năng lượng điện tương đối rẻ và sạch so với các nhà máy sản xuất điện khác, đặc biệt nó có thể ít gây ô nhiễm môi trường hơn các nhà máy nhiệt điện đốt than hay khí thiên nhiên. b./ Lịch sử phát triển điện hạt nhân(ĐHN) trên thế giới: Hình B.2 Nhà máy điện hạt nhân ở Nhật - Giai đoạn những năm 1950-1960: Là giai đoạn khởi đầu, khi công nghệ chưa được thương mại hoá. Đã xuất hiện những nhà máy điện hạt nhân đầu tiên ở Mỹ, Đức và Anh… Phát triển ĐHN trong giai đoạn này chủ yếu phục vụ khoa học, công nghệ và xây dựng tiềm lực hạt nhân bảo đảm an ninh quốc gia. - Giai đoạn 1970-1980: Giai đoạn này nhiều quốc gia đẩy nhanh tốc độ phát triển ĐHN khi công nghệ đã được thương mại hoá cao và do khủng hoảng dầu mỏ. Tỷ trọng ĐHN toàn cầu tăng gần hai lần, từ 9% lên 17%. Bước vào thập niên 1980 và 1990, sau sự cố Chernobyl, sự phản đối của công chúng, các yếu tố chính trị và sự cạnh tranh yếu về kinh tế do việc tăng cao các yêu cầu về an toàn đã làm cho tốc độ xây dựng điện hạt nhân giảm mạnh, một số nước có chủ trương loại bỏ ĐHN như Đức và Thuỵ Điển. - Giai đoạn từ đầu thế kỷ XXI tới nay: Khi an ninh năng lượng có ý nghĩa quyết định và công nghệ ĐHN ngày càng được nâng cao thì xu hướng phát triển ĐHN đã có những thay đổi tích cực.Ví dụ: Tầm nhìn 2020 của Mỹ về phát triển ĐHN đề nghị tăng 10.000MW cho 104 nhà máy ĐHN hiện có. Anh quay trở lại phát triển ĐHN do thiếu hụt năng lượng, trong khi Indonesia đã lập dự án khả thi và dự kiến sẽ đưa tổ máy ĐHN đầu tiên vào vận hành năm 2015… * Ưu điểm: ĐHN cung cấp nguồn năng lượng rẻ tiền, thay thế điện năng được sản xuất từ nhiên liệu hóa thạch. Nó có thể cung cấp điện năng với giá thấp hơn 50-80% so với các nguồn năng lượng truyền thống, giải quyết tình trạng thiếu điện cũng như thoả mãn nhu cầu gia tăng trong tương lai. Ngoài ra, lò phản ứng hạt nhân thực sự không phát thải khí nhà kính, góp phần kiềm chế nạn ấm hoá toàn cầu và thay đổi khí hậu. c./ Tình hình phát điện bằng năng lượng hạt nhân: Các nước Châu Á, vẫn là trung tâm mở rộng và phát triển điện hạt nhân, hiện có 20 trong số 31 lò phản ứng đang được xây dựng. Trên thực tế, 19 trong số 28 lò phản ứng mới nhất được kết nối vào mạng lưới điện nằm ở Nam Á và Viễn Đông. Ở Tây Âu, công suất phát điện hạt nhân vẫn tương đối ổn định cho dù có những cắt giảm ở Đức và Thụy Điển; Bỉ đã thông qua luật cắt giảm phát điện hạt nhân vào tháng 1/2003. Trong năm 2003, Liên bang Nga vẫn tiếp tục chương trình gia hạn cấp phép cho 11 nhà máy điện hạt nhân. Ở Hoa Kỳ, Ủy ban Quản lý Hạt nhân (NRC) đã thông qua 9 loại giấy gia hạn cấp phép mỗi lần là 20 năm đối với nhà máy điện hạt nhân có tuổi thọ là 60 năm, nâng tổng số giấy gia hạn cấp phép là 19. Ngoài ra còn thông qua việc nâng công suất cho 8 nhà máy điện hạt nhân, cho phép tăng sản lượng điện tối đa. Ba công ty đã xin cấp giấy phép của NRC xây dựng tại địa điểm mới, đây là nguồn điện dự trữ để sử dụng trong tương lai. d./ Xu thế điện hạt nhân trên thế giới: Điện hạt nhân đã có lịch sử 50 năm, đóng góp to lớn cho sự phát triển kinh tế - xã hội của nhiều quốc gia và góp phần bảo vệ môi trường. Tuy nhiên, quan điểm của con người hiện vẫn chia thành hai cực: ủng hộ và chống đối. * Bức tranh điện hạt nhân toàn cầu: Hình B.3 Tình hình phát triển điện hạt nhân ở các nước trên thế giới (tính đến năm 2005). Theo thống kê của Cơ quan Năng lượng Nguyên tử Quốc tế (IAEA), vào cuối năm 2002, toàn thế giới có 441 nhà máy điện hạt nhân (ĐHN) đang hoạt động. Những nhà máy này cung cấp 16% tổng sản lượng điện toàn cầu năm 2002, hay 2.574 tỷ kWh. Bảy nhà máy ĐHN khác đã được khởi công xây dựng trong năm 2002, trong đó có sáu ở ấn Độ, một ở CHDCND Triều Tiên, đưa tổng số nhà máy đang được xây dựng trên toàn thế giới là 32. Trong năm 2002, cũng đã có 4 nhà máy ĐHN ngừng hoạt động, với 2 ở Bulgaria và 2 ở Anh. Tại Tây Âu, có 146 lò phản ứng. Civaux-2 của Pháp là lò mới nhất gia nhập vào mạng lưới ĐHN từ năm 1999. Cùng với sự nâng cấp và mở rộng, tổng công suất chắc chắn sẽ vẫn ở gần mức hiện nay, mặc dù Bỉ, Đức và Thuỵ Điển đã quyết định loại bỏ ĐHN. Khả năng lớn nhất đối với công suất mới nằm tại Phần Lan. Vào tháng 5/2002, Quốc hội Phần Lan phê chuẩn ''quyết định trên nguyên tắc'' của chính phủ về xây dựng nhà máy ĐHN thứ năm. Không có nhà máy ĐHN mới nào được triển khai tại Mỹ kể từ năm 1978 mặc dù nhiều nhà máy, đã ngừng hoạt động, được tái khởi động kể từ năm 1998. Ở Canada, việc mở rộng sản xuất ĐHN ngắn hạn có thể diễn ra dưới hình thức tái khởi động một vài hoặc tất cả tám nhà máy (trong tổng số 22 nhà máy) hiện đã bị đóng cửa. Tại châu Phi, có 2 nhà máy ĐHN đang hoạt động và cùng nằm ở Nam Phi. Tại Mỹ La tinh, có sáu nhà máy, chia đều cho ba nước Argentina, Brazil và Mexico. * Chống đối và ủng hộ Lithuania hiện là nước có tỷ trọng ĐHN cao nhất thế giới (80,1%), tiếp đến là Pháp (78%), Slovakia (65,4%) và Bỉ (57,3%). Đây là một con số không nhỏ. Tuy nhiên, các nhóm chống đối lại cho rằng, các nhà máy ĐHN tạo ra chất thải phóng xạ gây chết người, vì vậy họ kịch liệt phản đối việc vận chuyển chúng, đặc biệt là nhóm Hoà Bình Xanh. Trong khi đó, những người ủng hộ, đặc biệt là các nhà khoa học, cho rằng chất thải phóng xạ không phải là một điểm yếu mà là một đặc thù của năng lượng hạt nhân. So với lượng thải khổng lồ của nhiên liệu hoá thạch vào khí quyển, lượng chất thải hạt nhân là nhỏ, không đáng kể và có thể cất giữ mà không gây nguy hại cho con người và môi trường. * Bao giờ VN có ĐHN ?. Một câu hỏi đặt ra nhiều vấn đề nhạy cảm. Trước đây, theo kế hoạch, VN sẽ có ĐHN vào