Tải trọng di động và phương pháp tính
Tải trọng di động: có vị trí thay đổi gây ra nội lực thay đổi.
Thí dụ: Xe lửa, ô tô, người, dầm cầu chạy
Vấn đề cần giải quyết: Cần tìm Smax (nội lực, phản lực )
Các phương pháp giải quyết:
Giải tích: lập biểu thức giải tích S(z) và khảo sát cực trị: phức tạp -> không dùng.
Đường ảnh hưởng: dùng nguyên lí cộng tác dụng. Được dùng trong thực tế.
48 trang |
Chia sẻ: tuandn | Lượt xem: 20590 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Bài giảng Cơ học kết cấu - Chương 3: Xác định nội lực do tải trọng di động, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
PGS. TS. ĐỖ KIẾN QUỐC KHOA KỸ THUẬT XÂY DỰNG BÀI GIẢNG CƠ HỌC KẾT CẤU CHƯƠNG 3 Tải trọng di động và phương pháp tính Tải trọng di động: có vị trí thay đổi gây ra nội lực thay đổi. Thí dụ: Xe lửa, ô tô, người, dầm cầu chạy… Vấn đề cần giải quyết: Cần tìm Smax (nội lực, phản lực …) 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG Chương 3: Xác định nội lực do tải trọng di động * Tải trọng di động và phương pháp tính (tt) Các phương pháp giải quyết: Giải tích: lập biểu thức giải tích S(z) và khảo sát cực trị: phức tạp không dùng. Thí dụ: ứng với 5 vị trí của tải trọng Đường ảnh hưởng: dùng nguyên lí cộng tác dụng. Được dùng trong thực tế. 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp đường ảnh hưởng Định nghĩa: Đồ thị của đại lượng S theo vị trí một lực tập trung P=1 (không thứ nguyên) có phương chiều không đổi, di động trên công trình. Kí hiệu: đah S hoặc “S” 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp đường ảnh hưởng (tt) Trình tự vẽ “S”: Đặt P=1 tại vị trí Z; coi như lực bất động. Lập biểu thức S=S(z), thường gồm nhiều biểu thức khác nhau cho nhiều đoạn khác nhau. Cho z biến thiên và vẽ đồ thị S=S(z). 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp đường ảnh hưởng (tt) Qui ước: Đường chuẩn vuông góc P=1 (hoặc // trục thanh) Trung độ vuông góc đường chuẩn. Trung độ (+) dựng theo chiều của P. 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp đường ảnh hưởng (tt) Chú ý Phân biệt sự khác nhau giữa đah S và biểu đồ S. Thứ nguyên tung độ đah = Thí dụ : 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp đường ảnh hưởng (tt) Thí dụ: Vẽ đường ảnh hưởng “A”, “B”, “Mk”, “Qk” 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * z Phương pháp đường ảnh hưởng (tt) Thí dụ (tt): Phản lực: 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp đường ảnh hưởng (tt) Thí dụ (tt): Nội lực: Đah gồm 2 đoạn: đường trái và đường phải. Xét cân bằng phần ít lực để đơn giản hơn (phần không có lực P=1). 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường trái Phương pháp đường ảnh hưởng (tt) Thí dụ (tt): Nội lực: 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường phải Phương pháp đường ảnh hưởng (tt) Thí dụ (tt): Nội lực (tt): 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * “Mk” b đ. trái đ. phải a Phương pháp đường ảnh hưởng (tt) Thí dụ (tt): Nội lực (tt) : 3.1 PHƯƠNG PHÁP ĐƯỜNG ẢNH HƯỞNG (TT) Chương 3: Xác định nội lực do tải trọng di động * z Xét dầm đơn giản có đầu thừa vì là trường hợp tổng quát của dầm đơn giản và dầm công xôn. 3.2 ĐƯỜNG ẢNH HƯỞNG TRONG DẦM TĨNH ĐỊNH ĐƠN GIẢN Chương 3: Xác định nội lực do tải trọng di động * 1. Đường ảnh hưởng phản lực 3.2 ĐƯỜNG ẢNH HƯỞNG TRONG DẦM TĨNH ĐỊNH ĐƠN GIẢN Chương 3: Xác định nội lực do tải trọng di động * Vẽ đah với 2 tung độ tại A và B, tức là z= 0 và z= L bậc 1 Đường ảnh hưởng nội lực (tt) Tiết diện trong nhịp: “Mk1”: trái giao phải dưới k1 cách vẽ nhanh. 3.2 ĐƯỜNG ẢNH HƯỞNG TRONG DẦM TĨNH ĐỊNH ĐƠN GIẢN (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực (tt) Tiết diện trong nhịp (tt): “Qk1”: trái song song phải vẽ nhanh. 3.2 ĐƯỜNG ẢNH HƯỞNG TRONG DẦM TĨNH ĐỊNH ĐƠN GIẢN (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực (tt): Tiết diện trong nhịp (tt): Chú ý: và 3.2 ĐƯỜNG ẢNH HƯỞNG TRONG DẦM TĨNH ĐỊNH ĐƠN GIẢN (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực (tt): Tiết diện đầu thừa: Chú ý: giống dầm côngxôn. 3.2 ĐƯỜNG ẢNH HƯỞNG TRONG DẦM TĨNH ĐỊNH ĐƠN GIẢN (TT) Chương 3: Xác định nội lực do tải trọng di động * Để vẽ đah thuộc hệ chính, thực hiện các bước sau: Vẽ đah, coi P=1 di động trực tiếp trên hệ chính. Giữ lại tung độ dưới mắt truyền lực. Nối các tung độ bằng các đoạn thẳng. 3.3 ĐƯỜNG ẢNH HƯỞNG CỦA HỆ CÓ MẮT TRUYỀN LỰC Chương 3: Xác định nội lực do tải trọng di động * Chứng minh: 3.3 ĐƯỜNG ẢNH HƯỞNG CỦA HỆ CÓ MẮT TRUYỀN LỰC (TT) Chương 3: Xác định nội lực do tải trọng di động * Mk =Riyi + Ri+1yi+1 = bậc 1 đường thẳng. Khi z=0 Mk = yi z=d Mk = yi+1 Đường ảnh hưởng thuộc hệ phụ Khi P=1 di động trên hệ phụ: vẽ đah như đối với hệ đơn giản. Khi P=1 trên hệ chính: đah = 0. 3.4 ĐƯỜNG ẢNH HƯỞNG CỦA HỆ GHÉP Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng thuộc hệ chính Khi P=1 trên hệ chính: hệ phụ không làm việc xét riêng hệ chính. Khi P=1 trên hệ phụ: đah là đường thẳng đi qua tung độ ứng dưới khớp nối hệ chính với phụ, và tung độ =0 ứng dưới gối tựa đất của dầm phụ (liên kết thẳng đứng). 3.4 ĐƯỜNG ẢNH HƯỞNG CỦA HỆ GHÉP (TT) Chương 3: Xác định nội lực do tải trọng di động * Chú ý: Nếu hệ ghép phức tạp, có thể dùng phương pháp động để vẽ dạng đah, sau đó tính 1 tung độ đặc biệt và suy ra các tung độ khác. 3.4 ĐƯỜNG ẢNH HƯỞNG CỦA HỆ GHÉP (TT) Chương 3: Xác định nội lực do tải trọng di động * Chú ý: Thí dụ: 3.4 ĐƯỜNG ẢNH HƯỞNG CỦA HỆ GHÉP (TT) Chương 3: Xác định nội lực do tải trọng di động * Phương pháp động vẽ đah: 3 khớp tương hỗ của 3 miếng cứng của 1 hệ BH thẳng hàng: (1,2) + (2,3) = (1,3). Tung độ ứng với khớp nối với đất thì bằng 0 (không có chuyển vị đứng) Đường ảnh hưởng phản lực Phản lực được tính tương tự như trong dàn dầm. 3.5 ĐƯỜNG ẢNH HƯỞNG TRONG DÀN DẦM Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực bằng phương pháp mặt cắt đơn giản M/c trong nhịp: N1 và N2 Cắt đốt chứa N1 và N2. 1/ P=1 bên trái đốt bị cắt: xét cân bằng phần phải (ít lực) 2/ P=1 bên phải đốt bị cắt: xét phần trái. 3/ P=1 trong đốt cắt: đường nối. 3.5 ĐƯỜNG ẢNH HƯỞNG TRONG DÀN DẦM (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực bằng phương pháp mặt cắt đơn giản (tt) M/c trong nhịp: N1 3.5 ĐƯỜNG ẢNH HƯỞNG TRONG DÀN DẦM (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực bằng phương pháp mặt cắt đơn giản (tt) M/c trong nhịp: N2 3.5 ĐƯỜNG ẢNH HƯỞNG TRONG DÀN DẦM (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng nội lực bằng phương pháp mặt cắt đơn giản (tt) M/c đầu thừa: N3 1/ P=1 bên trái đốt bị cắt 2/ P=1 bên phải đốt bị cắt 3/ P=1 trong đốt cắt: đường nối. 3.5 ĐƯỜNG ẢNH HƯỞNG TRONG DÀN DẦM (TT) Chương 3: Xác định nội lực do tải trọng di động * Đah nội lực bằng phương pháp tách mắt Lập biểu thức nội lực khi: 1/ P=1 đặt tại mắt 2/ P=1 ngoài đốt cắt 3/ P=1 trong đốt cắt: đường nối. Minh họa N4 3.5 ĐƯỜNG ẢNH HƯỞNG TRONG DÀN DẦM (TT) Chương 3: Xác định nội lực do tải trọng di động * Tải trọng tập trung Dùng nguyên lý cộng tác dụng 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH Chương 3: Xác định nội lực do tải trọng di động * Tải trọng tập trung (tt) 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH Chương 3: Xác định nội lực do tải trọng di động * Chú ý: Nếu “S” có bước nhảy: St = P.yp Sp = P.yt Tải trọng phân bố Trường hợp thường gặp: q = const 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH (TT) Chương 3: Xác định nội lực do tải trọng di động * Momen tập trung Thế M bằng ngẫu lực 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH (TT) Chương 3: Xác định nội lực do tải trọng di động * Nếu có nhiều momen Nếu “S” bị gãy: St = Mtgp Sp = Mtgt Thí dụ: Tính Mk, và bằng phương pháp đah 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH (TT) Chương 3: Xác định nội lực do tải trọng di động * Thí dụ (tt): Tính Mk 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH (TT) Chương 3: Xác định nội lực do tải trọng di động * K P = 1 L/2 “Mk” Thí dụ (tt): Tính 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH (TT) Chương 3: Xác định nội lực do tải trọng di động * Thí dụ (tt): Kiểm tra lại 3.6 XÁC ĐỊNH ĐẠI LƯỢNG S BẰNG ĐAH (TT) Chương 3: Xác định nội lực do tải trọng di động * Chương 3: Xác định nội lực do tải trọng di động * 3.7 ĐAH GỒM CÁC ĐOẠN THẲNG Tính chất: Có thể thay tác dụng của các tải trọng trên từng phần thẳng của đah bằng hợp lực của chúng. Chứng minh: 3.7 ĐAH GỒM CÁC ĐOẠN THẲNG Chương 3: Xác định nội lực do tải trọng di động * Theo định lý Varinhông và zotg = y S = Ryo Chú ý: với tải trọng phân bố cũng chứng minh tương tự. Đoàn tải trọng tiêu chuẩn và vị trị bất lợi Là đoàn tải trọng dùng để thiết kế kết cấu, tuân theo qui phạm về tải trọng, khoảng cách … Vị trí bất lợi là vị trí của đoàn tải trọng gây ra cực trị Smax(min) 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI Chương 3: Xác định nội lực do tải trọng di động * Biểu hiện giải tích của vị trí bất lợi Với đah S và đoàn tải trọng tiêu chuẩn có thể lập được biểu thức giải tích của S(z). Vị trí cho cực trị của S như sau: Nếu S(z) là hàm trơn: Điều kiện: 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động * Biểu hiện giải tích của vị trí bất lợi (tt) Nếu S(z) là hàm không trơn và cực trị tại điểm gãy thì biểu hiện cực trị như hình vẽ dưới đây: Điều kiện cần: Nếu có cực đại tại điểm đang xét thì Tương tự, nếu cực tiểu thì Cực trị: 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng đa giác 1- Cực trị của S chỉ có thể xảy ra khi có ít nhất một tải trọng tập trung đặt tại đỉnh của đường ảnh hưởng. S = Riyi(z) S’ = Riyi’(z) S = Ritgi , tgi = const Để cho cực trị thì cần thiết phải có St’ Sp’, do đó Ri phải có thay đổi, tức là có ít nhất 1 lực tập trung đặt tại 1 đỉnh của đường ảnh hưởng. Lực đó gọi là lực tới hạn Pth. 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động * Đường ảnh hưởng đa giác (tt) 2- Nếu Pth đặt tại đỉnh lồi thì có thể cho Smax; ngược lại, đặt tại đỉnh lõm thì có thể cho Smin. St’ = Ritgi + Pthtgt Sp’ = Ritgi + Pthtgp S’= Pth(tgp - tgt) S’= Pthtg 0, nếu đỉnh lõm Smin 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động * Cách tìm Smax hoặc Smin trong thực tế Nếu đoàn tải trọng ngắt được thì chỉ đặt lên đường ảnh hưởng 1 dấu (dấu (+) để tìm Smax, dấu (-) để tìm Smin). Đặt tải trọng lớn lên các tung độ lớn, thường đặt Pmax lên tung độ ymax (vì S =Piyi). Nếu cần có thể thử 1 số phương án đặt tải. 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động * Khái niệm biểu đồ bao Định nghĩa: là biểu đồ thể hiện nội lực lớn nhất và nhỏ nhất tại mỗi tiết diện, do đồng thời tĩnh tải và hoạt tải gây ra. Thí dụ: Xác định các tiết diện cần tính nội lực: 0, 1,… … , 6. Vẽ biểu đồ do tĩnh tải. Vẽ đường ảnh hưởng các tiết diện. Tính nội lực do hoạt tải. = P.y2max = P.y2min Xác định các giá trị bao = Mtĩnh + = Mtĩnh + 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động * Khái niệm biểu đồ bao (tt) Thí dụ (tt): 3.8 DÙNG ĐAH ĐỂ XÁC ĐỊNH VỊ TRÍ BẤT LỢI (TT) Chương 3: Xác định nội lực do tải trọng di động *