Báo cáo quá trình thiết kế và thi công Đồng hồ thời gian thực RTC (RealTime Clock) với các nội
dung:
- Sơ lược về RTC (các chức năng và ứng dụng).
- Sơ đồ nguyên lí RTC.
- Cấu tạo và chức năng các linh kiện sử dụng cho RTC.
- Giải thuật và chương trình ứng dụng viết cho RTC.
Các file đính kèm: File chương trình, sơ đồ nguyên lí và sơ đồ mạch in của RTC.
43 trang |
Chia sẻ: oanh_nt | Lượt xem: 2085 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Báo cáo Quá trình thiết kế và thi công Đồng hồ thời gian thực RTC, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Báo cáo quá trình thiết kế và thi
công Đồng hồ thời gian thực RTC
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 1/42
Report n o 03.01
Gửi đến: picvietnam@googlegroups.com
Nội dung: Real Time Clock Version 1.0
MICROSOFT WORD
Tóm tắt:
Báo cáo quá trình thiết kế và thi công Đồng hồ thời gian thực RTC (Real Time Clock) với các nội
dung:
- Sơ lược về RTC (các chức năng và ứng dụng).
- Sơ đồ nguyên lí RTC.
- Cấu tạo và chức năng các linh kiện sử dụng cho RTC.
- Giải thuật và chương trình ứng dụng viết cho RTC.
Các file đính kèm: File chương trình, sơ đồ nguyên lí và sơ đồ mạch in của RTC.
1. Sơ lược về RTC
Đây là ứng dụng sử dụng vi điều khiển PIC để thiết kế một đồng hồ điện tử treo tường
hoặc để bàn. Sau đây là một vài điểm giới thiệu sơ lược:
- Sử dụng LED 7 đoạn để hiển thị. Thiết bị này thích hợp hơn cho mục đích hiển thị của
RTC khi dùng làm động hồ treo tường hoặc để bàn.
- Sử dụng IC thời gian thực DS12C887 . IC này có tác dụng tạo ra thời gian thực chính
xác tuyệt đối, bao gồm giờ, phút, giây, thứ, ngày, tháng, năm. Bên cạnh đó là các ngắt
lập trình được phục vụ cho việc cập nhật thời gian thực và hẹn giờ.
- Sử dụng IC ghi dịch 74HC595 để tăng số lượng chân điều khiển cho vi điều khiển.
- Sử dụng vi điều khiển PIC16F877A cho các thao tác truy cập thời gian thực, hiển thị
giờ và chỉnh giờ . Thực chất việc sử dụng PIC16F877A cho ứng dụng này là phí phạm,
vì ứng dụng không yêu cầu thêm một chức năng phụ nào của vi điều khiển ngoài chức
năng I/O.
RTC Version 1.0 là bản “nháp” và bao gồm các chức năng cụ thể sau:
- Hiển thị giờ, phút, giây, ngày, tháng, năm. Không hiển thị thứ (quên mất tiêu ☺ ).
- Điều chỉnh được giờ, phút, giây.
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 2/42
2. Sơ đồ nguyên lí mạch RTC
Để thuận tiện cho việc bố trí góc nhìn, thiết kế mẫu mã sản phẩm và mục đích sử dụng,
ứng dụng RTC sẽ bao gồm 3 mạch: mạch điều khiển, mạch hiển thị và mạch cho các nút bấm.
2.1. Sơ đồ nguyên lí mạch điều khiển
Mạch điều khiển bao gồm các thành phần điều khiển chính như:
- Vi điều khiển PIC16F877A và các bộ phận hỗ trợ (thạch anh, reset, nạp chương
trình dùng Tiny Bootloader, các Jumper cho các chân còn dư).
- IC thời gian thực DS12C887 và các thành phận hỗ trợ (điện trở kéo lên cho chân
IRQ, reset).
- IC ghi dịch 74HC595 .
- Các khóa điện tử dùng Transistor A1015 phục vụ cho việc quét LED.
- Các Bus điều khiển và Bus dữ liệu nối sang các Board hiển thị và Board nút bấm.
- Nguồn cung cấp cho toàn bộ các Board . Điện áp đưa vào nguồn là điện áp 9V lấy từ
Adapter loại 9V/500mA.
Sau đây là sơ đồ nguyên lí cụ thể cho Board điều khiển:
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 3/42
Hình 1: Sơ đồ nguyên lí Board điều khiển.
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 4/42
2.2. Sơ đồ nguyên lí Board hiển thị
Board hiển thị bao gồm các LED 7 đoạn. Sơ đồ nguyên lí cụ thể như sau:
NTC1 1 2 3 4 5 NTC2 1 2 3 4 5 NTC3 1 2 3 4 5 NTC4 1 2 3 4 5 NTC5 1 2 3 4 5 NTC6 1 2 3 4 5 NTC7 1 2 3 4 5 NTC8 1 2 3 4 5 NTC9 1 2 3 4 5 NTC10 1 2 3 4 5 NTC11 1 2 3 4 5 NTC12 1 2 3 4 5 NTC13 1 2 3 4 5 NTC14 1 2 3 4 5
J2
F A B F A B F A B F A B F A B F A B F A B F A B F A B F A B F A B F A B F A B F A B
8 G G G G G G G G G G G G G G
7 V C C V C C V C C V C C V C C V C C V C C V C C V C C V C C V C C V C C V C C V C C
6
5
4
3
2
1
CON8
E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P E D V C C C D P
1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6 1 0 9 8 7 6
J7
1
2
3
4
5
6
J6
1
2
3
4
5
6
7
8
Hình 2: Sơ đồ nguyên lí Board hiển thị.
Các giá trị giờ, phút, giây, ngày, tháng dùng 2 LED để hiển thị. Giá trị năm dùng 4 LED
để hiển thị. Tổng cộng ta cần sử dụng 14 LED.
2.3. Sơ đồ nguyên lí Board nút bấm
Board nút bấm gồm 3 nút dùng để chỉnh giờ. Sơ đồ nguyên lí như sau:
HI HI HI
R27 R28 R29 HI J2
R R R
1
2
3
4
SW2 SW3 SW4 5
TIMESET ALARMSET INC 6
0 CON6
0 0 0
Hình 3: Sơ đồ nguyên lí Board nút bấm.
3. Cấu tạo và chức năng các linh kiện sử dụng trong RTC
Phần này sẽ đi sâu vào cấu tạo bên trong của các linh kiện sử dụng cho RTC và cách điều
khiển chúng sử dụng vi điều khiển PIC.
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 5/42
3.1. LED 7 đoạn
3.1.1 Cấu tạo của LED 7 đoạn
LED 7 đoạn là một công cụ thông dụng được dùng để hiển thị các thông số dưới dạng
các số từ 0 đến 9. Mặc dù công cụ LCD giúp ta thể hiện các thông số một cách linh động
hơn nhưng LED 7 đoạn vẫn được sử dụng nhiều trong công nghiệp do các ưu thế của nó
như: ít chịu ảnh hưởng của nhiệt độ, dễ tạo sự chú ý và góc nhìn rộng.
LED 7 đoạn bao gồm 7 đoạn LED được đánh dấu là các kí tự a, b, c, d, e, f, g và một dấu
chấm thập phân kí hiệu là dp. Ta có thể xem LED 7 đoạn là một tổ hợp gồm 8 LED. 8 LED
này có một đầu (Anode hoặc Cathode) được nối chung và được bố trí theo một qui tắc nhất
định dùng để hiển thị các chữ số thập phân.
Có hai loại LED 7 đoạn, đó là loại Anode chung (cực Anode của các LED được nối
chung với nhau) và loại Cathode chung (cực Cathode của các LED được nối chung với
nhau). Tùy theo từng loại LED mà ta có các phương pháp điều khiển các LED trong tổ hợp
đó sáng tắt một cách thích hợp. Đối với loại Anode chung, một LED sẽ được bật sáng nếu
mức logic đưa vào chân điều khiển đoạn LED đó là mức logic 0. Đối với loại Cathode
chung, một LED sẽ được bật sáng nếu mức logic đưa vào chân điều khiển đoạn LED đó là
mức logic 1.
Hình 4: LED 7 đoạn
Hình vẽ trên là một LED 7 đoạn loại Cathode chung. Thực ra cấu trúc các chân của LED
7 đoạn có thể thay đổi chứ không cố định. Một phương pháp để xác định chính xác các
chân điều khiển của LED 7 đoạn là kiểm tra từng chân của LED đó.
Dựa vào hình vẽ ta có thể hiểu được một phần nào phương pháp hiển thị của một LED
7 đoạn. Ví dụ, muốn hiển thị số “6”, ta sẽ điều khiển các đoạn LED a, c, d, e, g, f sáng lên .
Việc điều khiển sáng tắt được thực hiện bằng cách đưa dữ liệu thích hợp vào các chân a-g
và dp (tạm gọi là các chân dữ liệu) của LED 7 đoạn. Đó là cách hiển thị theo từng LED. Tuy
nhiên, trong thực tế, để tiết kiệm số chân cần thiết để điều khiển cùng một lúc nhiều LED 7
đoạn, các chân dữ liệu của các LED sẽ được nối song song với nhau, các chân anode chung
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 6/42
(hoặc cathode chung) được dùng để cho phép LED đó sáng hay tắt (tạm gọi là các chân
điều khiển). Phương pháp hiển thị sẽ dựa trên nguyên lí lưu ảnh của mắt.
3.1.2 Xây dựng module hiển thị trên LED 7 đoạn
Module ứng dụng sau đây được xây dựng dùng để hiển thị 2 chữ số thập phân trên 2
LED 7 đoạn sử dụng loại LED 7 đoạn Anode chung.
Trước hết ta sẽ tiến hành kết nối phần cứng giữa vi điều khiển và LED 7 đoạn để từ đó
xác định được dữ liệu cần đưa vào LED 7 đoạn để hiển thị một chữ số thập phân nào đó.
Thứ tự kết nối các chân như sau:
- Chân dp nối vào chân RD7 .
- Chân g nối vào chân RD6 .
- Chân f nối vào chân RD5 .
- Chân e nối vào chân RD4 .
- Chân d nối vào chân RD3 .
- Chân c nối vào chân RD2 .
- Chân b nối vào chân RD1 .
- Chân a nối vào chân RD0 .
Muốn điều khiển một đoạn LED nào đó sáng lên, ta đưa vào chân điều khiển LED đó
về mức logic 0. Với cách nối chân như vậy, ta có bảng dữ liệu tương ứng với các chữ số cần
hiển thị trên LED 7 đoạn như sau:
Chữ RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 Mã
số (dp) (g) (f) (e) (d) (c) (b) (a) HEX
0 1 1 0 0 0 0 0 0 C0h
1 1 1 1 1 1 0 0 1 F9h
2 1 0 1 0 0 1 0 0 A4h
3 1 0 1 1 0 0 0 0 B0h
4 1 0 0 1 1 0 0 1 99h
5 1 0 0 1 0 0 1 0 92h
6 1 0 0 0 0 0 1 0 82h
7 1 1 1 1 1 0 0 0 F8h
8 1 0 0 0 0 0 0 0 80h
9 1 0 0 1 0 0 0 0 90h
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 7/42
Dựa vào bảng dữ liệu trên, muốn hiển thị một chữ số lên LED 7 đoạn, ta chỉ việc đưa
mã HEX tương ứng với chữ số đó ra PORT D của vi điều khiển. Bảng mã trên không cố
định mà có thể thay đổi tùy thuộc vào cấu trúc phần cứng của mạch điều khiển . Tùy theo
cách kết nối mà ta có thể xây dựng bảng mã tương ứng.
Để điều khiển việc cho phép một LED nào đó tắt hoặc sáng. Ta nối các chân RB0 và RB1
với các chân điều khiển của LED thông qua các “công tắc”. “Công tắc” này là các Transistor
và có cấu trúc mạch như hình 5. Khi chân điều khiển ở mức logic 1, transistor ngưng dẫn
và không có dòng vào LED 7 đoạn. Khi chân diều khiển ở mức logic 0, transistor dẫn bão
hòa và xuất hiện dòng điện đi qua các LED.
Ta sẽ sử dụng chân RB0 để điều khiển LED hàng đơn vị và chân RB1 để điều khiển LED
hàng chục.
5V
HI
10 K
RBx
LO
A
Hình 5: Sơ đồ nguyên lí công tắc điều khiển
Sau đây là sơ đồ mạch cụ thể:
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 8/42
IH
R13
R
NTC3
IH
1 40 IH
MCLR/VPP RB7/PGD 39
SW1 2 RB6/PGC 38
3 RA0/AN0 RB5 37
4 RA1/AN1 RB4 36
5 RA2/AN2/VREF-/CVREF RB3/PGM 35
6 RA3/AN3/VREF+ RB2 34 R1 R2
7 RA4/TOCKI/C1OUT RB1 33 10 K 10K
RA5/AN4/SS/C2OUT RB0/INT A1015 A1015
0 8
9 RE0/RD/AN5 30 330 DP B
10 RE1/WR/AN6 RD7/PSP7 29 330 G A
RE2/CS/AN7 RD6/PSP6 28 330 F F
15 RD5/PSP5 27 330 E G
16 RC0/T1OSO/T1CKI RD4/PSP4 22 330 D E
17 RC1/T1OSI/CCP2 RD3/PSP3 21 330 C D
18 RC2/CCP1 RD2/PSP2 20 330 B C
23 RC3/SCK/SCL RD1/PSP1 19 330 A DP NTC1 NTC2
24 RC4/SDI/SDA RD0/PSP0 1 2 3 4 5 1 2 3 4 5
25 RC5/SD0
F A B F A B
RC6/TX/CK G G
26 11 HI
30 pF RC7/RX/DT VDD 32 VC C VC C
14 VDD
OSC2/CLKO
4 MHz 31
VSS 12
13 VSS
OSC1/CLKI
30 pF
PIC16F877A 0
0
E D VC C C D P E D VC C C D P
10 9 8 7 6 10 9 8 7 6
Hình 6 : Sơ đồ nguyên lí module hiển thị cho LED 7 đoạn
Chương trình viết cho ứng dụng trải qua các bước sau:
- Đưa dữ liệu của LED 1 vào
- Bật LED 1
- Delay
- Đưa dữ liệu của LED 2 vào
- Bật LED 2
- Delay
- Lặp lại bước 1
Sau đây là chương trình cụ thể:
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 9/42
Chương trình 1:
;========================================================================
title “chuongtrinh1.asm”
processor 16f877a
include
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &
_XT_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF
;========================================================================
;------------------------------------------------------------------
; Khai báo biến
;------------------------------------------------------------------
count1 EQU 0x20
counta EQU 0x21
countb EQU 0x22
;=========================================================================
; Chương trình chính
ORG 0x000
GOTO start
;========================================================= ================
start
;-----------------------------------------------------------------------------------
; Khởi tạo các PORT
;-----------------------------------------------------------------------------------
BCF STATUS, RP1
BSF STATUS,RP0 ; BANK1
CLRF TRISD ; PORTD <- output
CLRF TRISB ; PORTB <- output
BCF STATUS,RP0 ; BANK0
CLRF PORTB
CLRF PORTD
;-----------------------------------------------------------------------------------
; Vòng lặp chính của chương trình
;-----------------------------------------------------------------------------------
loop
MOVLW 0x99 ; hiển thị số 4
MOVWF PORTD
MOVLW b'11111101' ; bật LED hàng chục
MOVWF PORTB
CALL delay_1ms ; delay_1ms
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 10/42
MOVLW 0x92 ; hiển thị số 5
MOVWF PORTD
MOVLW b'11111110' ; bật LED hàng đơn vị
MOVWF PORTB
CALL delay_1ms ; delay_1ms
GOTO loop
;=========================================================================
; Chương trình con
;=================================================================== ======
;--------------------------------------------------------------
; Chương trình con tạo thời gian delay 1 ms
;--------------------------------------------------------------
delay_1ms
MOVLW d'1'
MOVWF count1
d1
MOVLW 0xC7
MOVWF counta
MOVLW 0x01
MOVWF countb
delay_0
DECFSZ counta,1
GOTO $+2
DECFSZ countb,1
GOTO delay_0
DECFSZ count1,1
GOTO d1
RETURN
END
;========================================================================
Trong chương trình trên, mỗi LED sẽ được bật sáng trong một khoảng thời gian 1 ms,
sau đó tắt LED đó và bật LED khác lên. Do thời gian bật tắt quá nhanh nên mắt sẽ bị đánh
lừa là LED sáng liên tuc. Hiện tượng này có thể quan sát rõ hơn bằng cách tăng thời gian
delay lên, khi đó ta sẽ thấy từng LED được bật tắt một cách tuần tự.
Tương tự ta có thể mở rộng số lượng LED bằng cách nối song song tất cả chúng lại với
nhau và áp dụng giải thuật trên để hiển thị.
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 11/42
3.2. IC ghi dịch 74HC595
Đây là IC ghi dịch nối tiếp sang song song. IC được ứng dụng để tăng số lượng chân
output cho vi điều khiển. Có nhiều phương pháp để tăng số lượng chân , ví dụ như dùng
IC giải mã, tuy nhiên IC ghi dịch 74HC595 được lựa chọn như là một giải pháp vì các
nguyên nhân sau:
- Số lượng chân điều khiển luôn cố định là 4 chân : nếu dùng giải mã thì số lựong
chân điều khiển sẽ tăng theo số lượng chân ngõ ra (khi phải ghép nhiều IC lại với
nhau). Trong khi dùng ghi dịch thì số lượng chân điều khiển luôn là cố định ngay cả
khi cần ghép nhiều IC lại với nhau.
- Cho phép điều khiển linh họat và ổn định hơn : giữa các thanh ghi dịch và ngõ ra
có một “chốt”. Điều này cho phép thay đổi linh hoạt dữ liệu trong các thanh ghi
dịch và ổn định trạng thái logic ngõ ra.
3.2.1 Cấu tạo của 74HC595
74HC595 là IC ghi dịch nối tiếp sang song với 8 ngõ ra QH:QA và bộ chốt dữ liệu 8 bit.
Dữ liệu được đưa vào các thanh ghi dịch bên trong IC thông qua 1 chân SER (chân 14) và
các chân điều khiển RCK (chân 12, điều khiển chốt dữ liệu), chân SCK (chân 11, điều khiển
quá trình dịch dữ liệu), chân (chân 10, dùng để tác động lên quá trình xóa dữ liệu)
chân Q’H (chân 9, chân đưa dữ liệu nối tiếp ra ngoài dùng để ghép nhiều IC lại với nhau)
và chân dùng để cho phép các ngõ ra.
Hình 7: Sơ đồ chân là bảng sự thật của 74HC595.
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 12/42
Hình 8: Sơ đồ khối 74HC595.
Ta có thể điều khiển được một hoặc nhiều IC 74HC595 ghép với nhau thông qua 4 chân
SER, RCK, SCK và . Điều này cho phép mở rộng một cách vô hạn số lượng chân ngõ
ra của vi điều khiển. Tuy nhiên nhược điểm của nó là thời gian truy xuất các ngõ ra chậm
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 13/42
hơn so với việ truy xuất trực tiếp, vì dữ liệu phải được đưa từng bỉt vào IC trước khi cho
xuất ra ngoài.
Hình sau thể hiện cách nối nhiều IC ghi dịch lại với nhau. Các chân điều khiển ( RCK ,
SCK và ) được nối chung lại với nhau, chân dữ liệu nối tiếp ngõ ra (chân 9) của IC
này được nối với chân dữ liệu nối tiếp ngõ vào của IC tiếp theo. Ta có thể mở rộng số
lương IC ghép với nhau theo cách tương tự mà số lượng chân điều khiển vẫn không đổi.
DATA IN
RCK
SCK
CLR
HI HI
13 10 11 12 14 13 10 11 12 14
G G
SDI SDI
CLR CLR
16 RCLK 16 RCLK
VCC SRCLK VCC SRCLK
8 74HC595 8 74HC595
GND GND
0
SDO SDO
QH QG QF QE QD QC QB QA QH QG QF QE QD QC QB QA
0 0
7 6 5 4 3 2 1 15 9 7 6 5 4 3 2 1 15 9
DATA OUT
Hình 9: Nối nhiều IC 74HC595 với nhau.
3.2.2 Xây dựng module điều khiển IC 74HC595
Cách điều khiển IC được thể hiện thông qua bảng sự thật ở hình 7. Trước tiên đưa 1 bit
dữ liệu vào chân SDI , sau đó tạo ra một xung dương ở chân SCK để dịch bit dữ liệu đó
vào. Trạng thái logic của chân SDI khi kích xung dương quyết định mức logic của bit được
dịch vào. Quá trình này được lặp đi lặp lại liên tục cho đến khi toàn bộ dữ liệu được dịch
vào trong IC. IC tiếp theo sẽ tiếp tục dịch dữ liệu vào từ chân SDO của của IC trước đó.
Khi quá trình dịch dữ liệu hoàn tất, ta tạo một xung dương ở chân RCK để đưa dữ liệu ra
ngoài các chân ngõ ra QH:QA .
Ứng dụng sau được dùng để đưa một byte dữ liệu ra IC ghi dịch 74HC595. Kết quả
được kiểm định thông qua các LED được nối vào các chân QH:QA của IC.
Các chân điều khiển sẽ được nối vào các chân RB3:RB0 của PORT B . Cụ thể như sau:
- Chân RB0 nối với chân SDI .
- Chân RB1 nối với chân SCK .
- Chân RB2 nối với chân .
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 14/42
- Chân RB3 nối với chân RCK .
Các thứ tự này không bắt buộc phải tuân thủ một cách tuyệt đối.
Sau đây là sơ đồ nguyên lí mạch ứng dụng:
HI
10 K
NTC1
1 40
MCLR/VPP RB7/PGD 39
SW1 2 RB6/PGC 38
3 RA0/AN0 RB5 37
4 RA1/AN1 RB4 36 RCK
5 RA2/AN2/VREF-/CVREF RB3/PGM 35 CLR HI
6 RA3/AN3/VREF+ RB2 34 SCK
0 7 RA4/TOCKI/C1OUT RB1 33 SDI
RA5/AN4/SS/C2OUT RB0/INT
8
9 RE0/RD/AN5 30 16 U2
10 RE1/WR/AN6 RD7/PSP7 29 15 330 D1
RE2/CS/AN7 RD6/PSP6 28 QA 1 330 D2
15 RD5/PSP5 27 VCC QB 2 330 D3
16 RC0/T1OSO/T1CKI RD4/PSP4 22 SDI 14 QC 3 330 D4
17 RC1/T1OSI/CCP2 RD3/PSP3 21 RCK 12 SER QD 4 330 D5
18 RC2/CCP1 RD2/PSP2 20 SCK 11 RCK QE 5 330 D6
23 RC3/SCK/SCL RD1/PSP1 19 CLR 10 SRCK QF 6 330 D7
24 RC4/SDI/SDA RD0/PSP0 SRCLR QG 7 330 D8
RC5/SD0 QH
25 HI 13
26 RC6/TX/CK 11 8 G 9
30 pF RC7/RX/DT VDD 32 GND QHP
14 VDD 74HC595 0
OSC2/CLKO 0
4 MHz 31
30 pF VSS 12
13 VSS
OSC1/CLKI
0
0 PIC16F877A
Hình 10: Sơ đồ nguyên lí mạch ứng dụng điều khiển IC 74HC595.
Sau đây là chương trình viết cho ứng dụng:
Chương trình 2:
;========================================================================
title “chuongtrinh2.asm”
processor 16f877a
include
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &
_XT_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF
;========================================================================
;---------------------------------------------------------
; Khai báo biến
;---------------------------------------------------------
sendreg EQU 0X20 ; chứa dữ liệu cần xuất ra
count EQU 0X21 ; dùng để kiểm soát số lượng bit
; đã gửi ra
;----------------------------------------------------------
;Khai báo phần cứng
Người báo cáo: Nguyễn Trung Chính Tài liệu: REP03.01
Ngày: 9/5/2006 Trang: 15/42
;----------------------------------------------------------
#define data PORTB,0
#define clock PORTB,1
#define clear PORTB,2
#define latch PORTB,3
;========================================================================
; Chương trình chính
ORG 0x000
GOTO start
;========================================================================
start
;------------------------------------------------------
; Khởi tạo các PORT điều khiển
;-------------------------------------------------------
BCF STATUS,RP1
BSF STATUS,RP0 ; BANK1
MOVLW 0xF0 ; các chân RB3:RB0 là output
MOVWF TRISB ; các chân RB7:RB4 là input
BCF STATUS,RP0 ; BANK0
;---------------------------------------------------------------------
; Khởi tạo IC 74HC595
;---------------------------------------------------------------------
BCF clear ; reset dữ liệu trong IC 74HC595
NOP ; clear tác động cạnh xuống
BSF clear ; đưa chân trở về mức logi