Đề tài Các phương pháp phân tích nhiệt

Phân tích nhiệt là phương pháp phân tích mà trong đó các tích chất vật lý cũng như hóa học của mẫu được đo một cách liên tục như những hàm của nhiệt độ, nhiệt độ ở đây thay đổi có quy luật được định sẵn (thông thường thay đổi tuyến tính theo thời gian). Trên cơ sở lý thuyết về nhiệt động học, từ sự thay đổi các tính chất đó ta có thể xác định được các thông số yêu cầu của việc phân tích. Các tính chất được xác định bao gồm: Nhiệt độ chuyển pha, khối lượng mất đi, năng lượng chuyển pha, biến đổi về kích thước, ứng suất, tính chất nhờn, đàn hồi. Các thông tin cơ bản mà phương pháp này mang lại cho chúng ta là rất quan trọng đối với việc nghiên cứu và phát triển một loại sản phẩm. Có rất nhiều phương pháp phân tích nhiệt khác nhau, nhưng trong khuôn khổ phần này ta chỉ tìm hiểu ba phương pháp chính sau: Phân tích nhiệt vi sai (DTA). Quét nhiệt vi sai (DSC). Phân tích nhiệt trọng lượng (TGA)

pdf30 trang | Chia sẻ: lvbuiluyen | Lượt xem: 8122 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Các phương pháp phân tích nhiệt, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BÀI LUẬN ĐỀ TÀI: CÁC PHƯƠNG PHÁP PHÂN TÍCH NHIỆT 1 MỤC LỤC MỤC LỤC ...................................................................................................... 1 I. PHƯƠNG PHÁP PHÂN TÍCH NHIỆT LÀ GÌ? .....................................2 II. CƠ SỞ LÝ THUYẾT VẬT LÝ CỦA PHƯƠNG PHÁP ĐO NHIỆT ....2 III. PHÂN TÍCH NHỆT VI SAI (DTA) .....................................................4 1. Cơ sở của phương pháp ..................................................................... 4 2. Tính năng của phương pháp .............................................................. 4 3. Thiết bị đo ......................................................................................... 4 4. Hoạt động và phân tích kết quả ......................................................... 8 IV. QUÉT NHIỆT VI SAI (DSC) ............................................................ 16 1. Cơ sở của phương pháp ................................................................... 16 2. Tính năng của phương pháp ............................................................ 17 3. Thiết bị đo ....................................................................................... 17 4. Hoạt động và phân tích kết quả ....................................................... 19 V. PHÂN TÍCH NHIỆT TRỌNG LƯỢNG (TGA) .................................. 24 1. Cơ sở của phương pháp ................................................................... 24 2. Tính năng của phương pháp ............................................................ 25 3. Thiết bị đo ....................................................................................... 25 4. Hoạt động và phân tích kết quả ....................................................... 26 VI. KỸ THUẬT TÍNH TOÁN ................................................................. 28 TÀI LIỆU THAM KHẢO ........................................................................ 29 2 I . PHƯƠNG PHÁP PHÂN TÍCH NHIỆT LÀ GÌ ? Phân tích nhiệt là phương pháp phân tích mà trong đó các tích chất vật lý cũng như hóa học của mẫu được đo một cách liên tục như những hàm của nhiệt độ, nhiệt độ ở đây thay đổi có quy luật được định sẵn (thông thường thay đổi tuyến tính theo thời gian). Trên cơ sở lý thuyết về nhiệt động học, từ sự thay đổi các tính chất đó ta có thể xác định được các thông số yêu cầu của việc phân tích. Các tính chất được xác định bao gồm: Nhiệt độ chuyển pha, khối lượng mất đi, năng lượng chuyển pha, biến đổi về kích thước, ứng suất, tính chất nhờn, đàn hồi. Các thông tin cơ bản mà phương pháp này mang lại cho chúng ta là rất quan trọng đối với việc nghiên cứu và phát triển một loại sản phẩm. Có rất nhiều phương pháp phân tích nhiệt khác nhau, nhưng trong khuôn khổ phần này ta chỉ tìm hiểu ba phương pháp chính sau: Phân tích nhiệt vi sai (DTA). Quét nhiệt vi sai (DSC). Phân tích nhiệt trọng lượng (TGA) II. CƠ SỞ LÝ THUYẾT VẬT LÝ CỦA PHƯƠNG PHÁP ĐO NHIỆT: Bản chất của kỹ thuật phân tích nhiệt là dựa trên nguyên lý về nhiệt động học. Có thể nói nhiệt là một trong những tham số cơ bản nhất của vật lý học. Chính sự thay đổi về nhiệt độ kéo theo một loạt các đại lượng vật lý khác cũng thay đổi như năng lượng chuyển pha, độ nhớt, độ đàn hồi, entropy, entanpy,… Và vật lý học đã chứng minh được rằng, độ thay đổi của nhiệt độ tỷ lệ thuận với độ thay đổi của nhiệt lượng mà khối vật chất đó nhận được và tỷ lệ nghịch với khối lượng và nhiệt dung của khối vật chất đó. Tính chất này thể hiện rõ qua công thức : với: Từ công thức trên ta thấy độ thay đổi nhiệt độ là phụ thuộc tuyến tính với độ thay đổi nhiệt lượng. Trong đó nhiệt dung C phụ thuộc vào bản chất của khối vật liệu. Một đại lượng cũng rất đáng quan tâm đến đó là entropy của mẫu. Đây là một đại lượng gắn bó chặt chẽ với năng lượng và nhiệt độ của hệ trong các quá 3 trình thay đổi trạng thái. Về mặt thống kê, nó còn đặc trưng cho tính ổn định trật tự của hệ. Và một tham số không thể không nhắc tới đó là pha. Thông thường vật chất tồn tại ở ba trạng thái: rắn, lỏng, khí. Sự chuyển đổi từ trạng thái này sang trạng thái khác của vật chất kèm theo sự hấp thụ hoặc tỏa nhiệt là hiện tượng chuyển pha. Đây là hiện tượng rất quan trọng trong nhiệt động học. Khi xảy ra hiện tượng chuyển pha thi áp suất giũa hai pha lien quan được xác định là bằng nhau. Giá trị áp suất này phụ thuộc vào nhiệt độ. Tại một nhiệt độ xác định thì duy nhất một điểm áp suất mà hai pha cùng tồn tại. Bởi thế, nhiệt độ là một yếu tố trực tiếp ảnh hưởng đến năng lượng chuyển pha. Các quá trình chuyển pha vật lý: Nóng chảy. Sôi. Thăng hoa. Bay hơi. Chuyển hóa đa hình. Chuyển từ vô định hình thành tinh thể. Sự phân hủy dung dịch rắn. Sự lớn lên của tinh thể. Hình 1: Giản đồ pha của hệ một cấu tử 4 III. PHÂN TÍCH NHIỆT VI SAI (DTA) 1. Cơ sở của phương pháp: DTA (differential thermal analysis ): Là phương pháp phân tích nhiệt dựa trên việc thay đổi nhiệt độ của mẫu đo và mẫu chuẩn được xem như là một hàm của nhiệt độ mẫu. Những tính chất của mẫu chuẩn là hoàn toàn xác định, một yêu cầu về mẫu chuẩn là nó phải trơ về nhiệt độ. Đối với mẫu đo thì luôn xảy ra một trong hai quá trình giải phóng và hấp thụ nhiệt khi ta tăng nhiệt độ của hệ, ứng với mỗi quá trình này sẽ có một trạng thái chuyển pha tương ứng. Dấu của năng lượng chuyển pha sẽ đặc trưng cho quá trình hấp thụ hay giải phóng nhiệt. Đồng thời ta cũng xác định được nhiệt độ chuyển pha đó. Mọi trạng thái chuyển pha của mẫu đo sẽ là kết quả của quá trình giải phóng hoặc thu nhiệt bởi mẫu, điều này sẽ tương ứng với đạo hàm của nhiệt độ được xác định từ mẫu chuẩn. Khoảng thay đổi nhiệt độ vi phân ( T) đối với nhiệt độ điều khiển T mà tại đó toàn bộ hệ thay đổi sẽ cho phép phân tích nhiệt độ chuyển pha và xác định đây là quá trình chuyển pha tỏa nhiệt hay thu nhiệt. 2. Tính năng của phương pháp: Phương pháp này cung cấp cho chúng ta những thông tin về: Phân biệt các nhiệt độ đặc trưng. Chuyển pha thuỷ tinh. Hành vi kết tinh và nóng chảy của vật liệu. Nhiệt độ kết tinh và nóng chẩy. Độ tinh khiết. Tính đa hình. Độ ổn định nhiệt. …. Từ những thông tin về vì trí, số liệu, hình dạng của các đường nhiệt ta có thể xác định được thành phần khối lượng của mẫu đo. 3. Thiết bị đo: Một hệ đo DAT có các bộ phận chủ yếu sau đây: Hai giá giữ mẫu bao gồm cặp nhiệt, bộ phận chứa mẫu. Một lò nhiệt. 5 Một thiết bị điều khiển nhiệt độ. Một hệ ghi kết quả đo. Hình 2: Sơ đồ hệ đo Lò chứa mẫu có dạng đối xứng gồm hai buồng và có chứa một cặp nhiệt. Mẫu đo được đặt trong một buồng và vật liệu chuẩn ( - Al2O3 ) được đặt trong buồng còn lại. Lò và buồng chứa vật mẫu được tăng nhiệt độ tuyến tính, thường là 5 12 0C bằng cách tăng điện áp qua sợi đốt thông qua biến thế hoặc cặp nhiệt điện có điều khiển. Hiệu nhiệt độ T = TS – TR (trong đó TS là nhiệt độ của mẫu nghiên cứu còn TR là nhiệt độ của mẫu chuẩn) được đo liên tục. Với: Bộ khuếch đại Bộ điều khiển: Bộ ghi S R Hệ điều khiển nhiệt độ 6 Bộ khuếch đại có hệ số khuếch đại cao, vào khoảng 1000 lần, nhiễu thấp, có thể khuếch đại tín hiệu cỡ V. Tín hiệu ghi trên trục y của bộ ghi mili vôn kế. Hình 3: Lò chứa và đường DTA Để T = 0 khi không có hiệu ứng nhiệt thì: Với và là thể tích của mẫu nghiên cứu và mẫu chuẩn. Do M và V của mẫu chuẩn và mẫu nghiên cứu có thể chọn giống nhau nên ta chỉ cần chọn mẫu chuẩn có và thỏa mãn: Nhiệt độ của lò được đo bằng cặp nhiệt riêng và được nối với trục x của bộ mili vôn kế qua chuyển tiếp bằng nước đá chuẩn hoặc bộ bổ chính nhiệt độ phòng. Vì cặp nhiệt được đặt thẳng lên mẫu hoặc gắn lên hộp đựng mẫu nên phương pháp DTA có độ chính xác cao nhất trong các phương pháp phân tích nhiệt. Phần diện tích ở phía dưới của đồ thị đầu ra không nhất thiết phải tỉ lệ thuận với phần năng lượng vận chuyển đi và đến mẫu. 7 Hình 4: Sơ đồ cung cấp nhiệt của thiết bị DTA (a) và một hệ đo DTA (b) Yêu cầu cần thiết của lò nhiệt là phải cung cấp cho mẫu một lượng nhiệt ổn định và vùng phân phôi nhiệt phải đủ lớn để có thể tiến hành phân tích. Lò nhiệt được điều khiển bởi bộ điều khiển nhiệt độ. Trong hệ đo này chỉ sử dụng một lò nhiệt duy nhất để đảm bảo rằng nhiệt độ cung cấp cho mẫu chuẩn cũng như mẫu nghiên cứu là giống nhau. Bộ điều khiển nhiệt độ có vai trò đảm cho tốc độ thay đổi nhiệt độ là không đổi, sự thay đổi nhiệt độ là ổn định. Hệ ghi kết quả đo yêu cầu phải có quán tính thấp để có thể cho ra kết quả tại tưng thời điểm đang đo. Một bộ phận quan trọng khác nữa đó là giá mẫu. Yêu cầu của giá mẫu là phải cung cấp nhiệt một cách đồng đều cho các mẫu. Hai giá chứa mẫu chuẩn và mẫu nghiên cứu đều chứa một cặp nhiệt, các giá này được một khối làm bằng sứ hoặc kim loại để đảm bảo sự phân phối nhiệt. Mẫu nghiên cứu được đựng trong một cái nồi nhỏ được thiết kế đặc biệt sao cho cặp nhiệt có thể đo được một cách chính xác nhất nhiệt độ của toàn mẫu. Đải làm việc của loại thiết bị này tương đối rộng, từ -190 đến +1600o C và độ nhạy vào khoảng 0.01mV/cm. Model Number DT-730 Series RT to 1,200°C Model DT-732 RT to 1,600°C Model DT-736 Sample Volumn (cubic millimeters) 150 Sample Size (grams - assume 2.35 g/cc) up to 0.350 Sample Cup Material High Alumina Sample Cup Design Boersma Differential Thermocouple Type "S" 8 DTA Sensitivity (micro-volts) < 0.0005 Atmospheres Air, Argon, Nitrogen Temperature Control System Multi-segment PID Controller (included) Software Orton DTA Data Acquisition / Analysis Software Analog to Digital (A/D) Conversion Card Included Computer System (supplied by customer) Windows XP, with expansion slot for A/D card Electrical Power Required 120 VAC, 15 amp, 60 Hz Hình 5: Thông số kỹ thuật của một hệ DTA. 4. Hoạt động và phân tích kết quả: Khi các mẫu đã được đặt vào các vị trí đo, chúng ta sẽ tiến hành đo. Đặt hệ đo ở chế độ thay đổi nhiệt độ vào cỡ 5 - C trong một phút. Sự thay đổi nhiệt độ bên trong các mẫu được xác định bởi các cặp nhiệt điện, độ chênh lệch về nhiệt độ giữa các cặp nhiệt sinh ra một điện áp, điện áp này thường rất nhỏ nên sẽ phải khuếch đại điện áp này lên trước khi đưa kết quả ra màn hình. Trong trường hợp này, điện áp và độ chênh lệch về nhiệt độ có vai trò tương tự nhau. Một đường cong DTA đơn giản gồm có các phần tuyến tính nhỏ bởi nhiệt dung và độ dẫn nhiệt của mẫu nghiên cứu và mẫu chuẩn có thể giống nhau tại một dải nhiệt độ nhỏ nào đó. 9 Hình 6: Đường cong thu được của hệ DTA Các đỉnh tương ứng với sự toả hay thu nhiệt rất mạnh dẫn tới việc có những thay đổi về mặt hoá học và vật lý học trong mẫu đo. Diện tích phần bên dưới hoặc bên trên các đỉnh cho ta thông tin về năng lượng ứng với các quá trình xảy ra trong mẫu. Đối với các đỉnh ứng với T dương, khi đó, mẫu đo đang toả nhiệt và trong trường hợp ngược lại thì mẫu đo đang thu nhiệt. Đối với phép đo của nhiệt độ chuyển pha, có thể chắc chắn rằng đỉnh nhiệt độ không thay đổi khi thay đổi kích thước của mẫu. Hình dạng của đỉnh DTA phụ thuộc vào trọng lượng mẫu và tốc độ thay đổi nhiệt được sử dụng. Việc làm chậm tốc độ thay đổi nhiệt tương đương với giảm khối lượng của mẫu, cả hai việc đó đều dẫn tới những đỉnh nhọn hơn. Người ta đã đưa ra công thức để xác định diện tích đỉnh như sau: mq A gK với: Xét một ví dụ: Hình 7: Mẫu phân tích đất sét bằng DTA. Mẫu phân tích trên là của đất sét, tốc độ thay đổi nhiệt độ là C/ phút. Đồ thị có trên ta thấy trục tung được biểu diễn bằng các mức điện áp. 10 Thử phân tích một số điểm lưu ý ở kết quả phân tích mẫu trên. Tại C, ta thấy điện áp âm, tức là T âm, khi này mẫu đo đang thu nhiệt bởi ở nhiệt độ này nước đang bắt đầu bay hơi nên cần nhiều năng lượng cho quá trình bay hơi đó. Đến khoảng gần C, ta lại thấy có một đỉnh dương, mẫu đo đang toả nhiệt, ở đây ứng với quá trình ôxy hoá các chất hữu cơ. Tăng nhiệt độ đến khoảng C thì chuyển đổi thạch anh Anpha-Beta xẩy ra, ứng với sự hấp thụ nhiệt của mẫu. Tại C thì cấu trúc đất sét cuối cùng bị gãy. Tiếp tục tăng nhiệt độ thì đến cỡ C sự tái kết tinh oxit xảy ra, mẫu giải phóng nhiệt.  Quá trình chuyển pha nóng chảy: Hiệu ứng nóng chảy thu nhiệt. Quá trình nóng chảy của chất tinh khiết vô biến (T =0). Quá trình nóng chảy của dung dịch rắn là nhất biến (T = 1), nhiệt độ nóng chảy phụ thuộc vào thành phần dung dịch rắn. Quá trình nóng chảy của hỗn hợp cơ học kết tinh từ pha lỏng gồm hai giai đoạn: -Nóng chảy của hỗn hợp ơtecti (T = 0) -Nóng chảy của chất còn lại (T = 1) Sự Nóng chảy là quá trình thuận nghịch nên trên đường cong nguội lạnh xuất hiện pic phát nhiệt. Hiệu ứng nóng chảy hầu như không phụ thuộc áp suất ngoài. 11 Cần lèn chặt mẫu hay lấy khối lượng mẫu nhỏ để tránh hiện tượng nóng chảy cục bộ thành chén. Hình dưới: Hình 10: Đường DTA của K2SO4. Hiệu ứng phát nhiệt trước nóng chảy (1069 o C) là do sự nóng chảy cục bộ trên thành chén.  Quá trình chuyể pha sôi, thăng hoa và bay hơi: Các quá trình này có hiệu ứng thu nhiệt lớn hơn nhiệu so với các quá trình nóng chảy, chuyển đa hình… Có kèm theo sự giảm khối lượng. Bất thuận nghịch trên đường DTA: không có hiệu ứng toả nhiệt trên đường nguội lạnh. Các chất dễ bay hơi bắt đấu hiệu ứng thu nhiệt ở nhiệt độ thấp hơn nhiệt độ sôi, pic giãn rộng. 12 Các chất khó bay hơi khác có pic nhọn, gọn, nhiệt độ trùng nhiệt độ sôi Các hiệu ứng này phụ thuộc mạnh vào áp suất ngoài. Quá trình thăng hoa : - Mẫu cấp hạt lớn: pic tù, rộng. - Mẫu cấp hạt nhỏ: pic nhọn, hẹp. Hình 11: Đường DTA & TG của CoSO4.7H2O ở 775mmHg tnc= 45 o C, ts =108 o C.  Quá trình chuyển pha đa hình: Hình 12: Giản đồ P – T của chuyển pha đa hình thuận nghịch (a) và chuyển pha đa hình bất thuận nghịch (b)  Chuyển pha đa hình thuận nghịch: Đường đốt nóng có pic thu nhiệt và đường làm nguội có pic phát nhiệt. Tốc độ chuyển pha nhanh trong trường hợp chuyển pha không có sự thay đổi số phối trí trong các đa hình, nhưng hiệu ứng nhiệt nhỏ. - Ví dụ chuyển pha -Quartz ⇌ -Quartz Tốc độ chuyển pha chậm trong trường hợp có sự thay đổi số phối trí trong các đa hình. 13 - Ví dụ : Sđơn tà ⇌ S mặt thoi Hình 13: Đường DTA đốt nóng và làm lạnh của SiO2 -Quartz ⇌ -Quartz. Tốc độ chuyển pha của đường nguội lạnh: Hình 14: Chuyển đa hình S tà phương ⇌ S mặt thoi Bắt đầu ở 95oC.  Chuyển pha đa hình bất thuận nghịch: Không có hiệu ứng chuyển pha trên đường làm nguội. Trên DTA & DSC có hiệu ứng tỏa nhiệt do đa hình không bền chuyển thành đa hình bền. oC 97,6 91,0 88,0 mm/min 0 0,073 0,198 oC 71,4 54,7 29,8 Mm/min 0,55 0,84 0,429 14 Qúa trình có bậc tự do bằng 1 do có một pha không bền, nên nhiệt độ bắt đầu chuyển pha thay đổi phụ thuộc vào tốc độ nâng nhiệt. Chỉ có thể phát hiện được hiệu ứng chuyển nhiệt khi tốc độ nâng nhiệt đủ nhanh. Có một số đa hình không bền bền nhiệt nên khi bị đốt nóng không chuyển thành đa hình bền. Trường hợp này mỗi đa hình sẽ có một nhiệt độ nóng chảy riêng. Ví dụ: (C6H5)2CO t o nc của -benzophenon (bền) 48,1 o C t o nc của -benzophenon (không bền) ở 26 o C.  Quá trình chuyển pha từ trạng thái vô định hình thành trạng thái tinh thể: Hiệu ứng phát nhiệt lớn. Các chất vô định hình có hoạt tính xúc tác, hập phụ càng cao thì có hiệu ứng phát nhiệt càng lớn. Nhiều hydroxyt, hợp chất hydrat khi phân hủy tạo ra chất vô định hình, sau đó mới chuyển thành tinh thể, do đó trên giản đồ DTA sau hiệu ứng phân hủy thu nhiệt là hiệu ứng phát nhiệt chuyển từ vô định hình thành tinh thể. Hình 15: Sự phân hủy của caolinite Al2O3.2SiO2.2H2O Hiệu ứng chuyển vô định hình thành tinh thể ở 960oC  Quá trình chuyển pha từ trạng thái thủy tinh thành trạng thái tinh thể: Thủy tinh là chất lỏng hóa rắn. Sự chuyển thủy tính thành tinh thể có hiệu ứng toả nhiệt khá lớn. Nhiệt tỏa ra bằng nhiệt thu vào của hiệu ứng nóng chảy từ dạng tinh thể. Hiệu ứng chuyển thủy tinh thành tinh thể diễn ra ở nhiệt độ gần với nhiệt độ nóng chảy. 15 Hình 16: DTA đốt nóng và làm nguội của CaB4O7 a. DTA của dạng thủy tinh b. DTA của mẫu chạy lại  Quá trình chuyển pha lớn lên của tinh thể: Các tinh thể (đặc biệt kim loại) có kích thước 10-6 – 10-3 cm có hiệu ứng toả nhiệt do phát triển kích thước và ổn định mạng tinh thể khi đun nóng. Tính xúc tác và hấp phụ của các chất gắn với kích thước tinh thể và sự ổn định cấu trúc tinh thể Sử dụng DTA khảo sát hoạt tính xúc tác của các tinh thể nhỏ (đặc biệt kim loại) rất hiệu quả và thuận tiện. Hình 17: Đường DTA của Trans-[Pt(NH3)2NO2Cl] Pic toả nhiệt bắt đầu ở 250oC và cực đại ở 270oC là sự lớn lên của bột Pt Pic 235oC ứng với sự phân hủy phức.  Quá trình chuyển pha phân hủy của dung dịch rắn không bền: Các kim loại thường tạo với nhau nhiều loại dung dịch rắn. Khi làm lạnh hệ nhanh, nhiều dung dịch rắn nằm trong trạng thái giả bền. 16 Quá trình phân hủy của dung dịch rắn không bền kèm hiệu ứng phát nhiệt. Một số dung dịch rắn không bền phân hủy dần dần ngay nhiệt độ phòng. Một số dung dịch rắn không bền chỉ phân hủy khi bị đun nóng. Hình 18: DTA & T của hợp kim B-95 ở các chế độ làm già khác nhau a. Mẫu vừa tôi xong b. Mẫu sau khi tôi 24 giờ Hình 19: DTA hóa già của hợp kim AK-6 I. Mẫu vừa tôi II. Mẫu sau tôi 2 ngày đêm III. Mẫu sau tôi 14 ngày đêm IV. Mẫu làm già nhân tạo V. Mẫu sau khi ủ đến đồng nhấ IV. QUÉT NHIỆT VI SAI (DSC): 1. Cơ sở của phương pháp: DSC là phương pháp phân tích nhiệt mà ở đó độ chênh lệch về nhiệt độ T giữa hai mẫu chuẩn và mẫu nghiên cứu luôn được duy trì bằng không. Thay vào đó người ta sẽ xác định entanpy của các quá trình này bằng cách xác định lưu lượng nhiệt vi sai cần để duy trì mẫu vật liệu và mẫu chuẩn trơ ở cùng nhiệt độ. Nhiệt độ này thường được lập trình để quét một khoảng nhiệt độ bằng cách tăng tuyến tính ở 17 một tốc độ định trước. Ta sẽ xác định được năng lượng đó thông qua tính diện tích giới hạn bởi đồ thị mà chúng ta thu được. T [ -190 0 C 1600 0 C ]. Khối lượng mẫu [ 0,1 100mg ]. Hệ số giãn nở nhiệt: 0,20 C/cm. Độ nhạy: 0,01mV/cm. 2. Tính năng của phương pháp: DSC cũng cho chúng ta những thông tin về sự chuyển pha của vật chất. Trong những nghiên cứu về chuyển pha, người ta hay sử dụng phương pháp này vì nó cho chúng ta những thông tin trực tiếp về năng lượng chuyển pha. Dụng cụ cũng có thể được dùng để xác định nhiệt dung, độ phát xạ nhiệt và độ tinh khiết của mẫu rắn. Đo nhiệt lượng vi sai DSC là kỹ thuật nghiên cứu các tính chất của polymer khi ta thay đổi nhiệt độ tác dụng. Với DSC có thể đo được các hiện tượng chuyển pha: nóng chảy, kết tinh, thủy tinh hóa hay nhiệt của phản ứng hóa học của polymer. 3. Thiết bị đo: Hình 20: Sơ đồ cung cấp nhiệt của DSC loại thông lượng nhiệt(a) và bổ chính công suất (b) Khi xuất hiện sự chuyển pha trong mẫu năng lượng sẽ được thêm vào hoặc mất đi trong mẫu nghiên cứu hoặc mẫu chuẩn để có thể duy trì sự cân bằng nhiệt độ giữa các mẫu. Vì giá trị năng lượng đưa vào tương ứng chính xác với giá trị năng lượng hấp thụ hoặc giải phóng của sự chuyển pha nên năng lượng cân bằng này sẽ được ghi lại và cung cấp kết quả đo trực tiếp cho năng lượng chuyển pha. Để đạt độ chính xác cao nhất về nhiệt trong phương pháp DSC thì cặp nhiệt và mẫu chuẩn phải được thiết kế để không tiếp xúc trực tiếp với mẫu. 18 Trong phân tích DSC, có hai loại thiết bị chính là thông lượng nhiệt (heat flux) và loại bổ chính công suất (power compensation). Các bộ phận chính của DSC: Giá giữ mẫu bao gồm cặp nhiệt, bộ phận chứa mẫu Lò nhiệt Thiết bị điều khiển nhiệt độ Hệ ghi kết quả đo. Hình 21: Sơ đồ khối của DSC bổ chính công suất Bản thân hai loại thiết bị DSC cũng khác nhau. Loại thông lượng