Đề tài Chất bán dẫn Graphene

Nền khoa học công nghệ trên thế giới đang phát triểnmột cáchnhanh chóng nhất là các nước phát triển như Hoa Kỳ, Nhật Bản, Nga. Sự phát triển của khoa học công nghệ đã đem lại những diện mạo mới cho cuộc sống con người và công nghệ điện tử viễn thông.Hiện nay trên thế giới đang hình thành một khoa học và công nghệ mới, có nhiều triển vọng và dự đoán sẽ có tác động mạnh mẽ đến tất cảcác lĩnh vực khoa học, công nghệ, kỹ thuật cũng như đời sống kinh tế- xã hội của thế kỷ 21. Đó là khoa học và công nghệ nano. Hiện nay, công nghệ điện tử truyền thống đang tiến đến những giới hạn cuối cùng của kích thước thang vi mô, khoa học công nghệ nano ra đời mở ra hướng nghiên cứu mới cho ngành điện tử với những linh kiện mới với kích thước nano. Theo dõi sự phát triển của khoa học công nghệ, vào cuối mỗi năm, tạp chí ScienceMag(Mỹ) đều điểm lại những sự kiện khoa học của thế giới trong năm và chọn ra 10 sự kiện nổi bật nhất, đặc biệt là chọn ra một sự kiện lớn nhất được gọi là Bước đột phá của năm. Theo tạp chí bước đột phá khoa học của năm 2009 là việc các nhà khoa học quốc tếphát hiện một bộ xương có niên đại 4,4 triệu năm tại Ethiopia, các sự kiện còn lại thuộc các lĩnh vực: Vật lý, khám phá vũ trụ, y học, liệu pháp gen và vật liệu graphene. Tâm điểm của lĩnh vực công nghệ vật liệu trong thập kỷ 2000 -2009 xoay quanh những nghiên cứu về hai trạng tháimới của cacbon, đó là, ống nano cacbonvà graphene. Kể từ khi được phát hiện và nghiên cứu vào đầu những năm 90 của thế kỷ trước, các nhà khoa học đã từng nhận định rằng, có vẻ như không có gì mà ống nano cacbon không thể làm được.

pdf58 trang | Chia sẻ: lvbuiluyen | Lượt xem: 3628 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Đề tài Chất bán dẫn Graphene, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LUẬN VĂN TỐT NGHIỆP ĐỀ TÀI: “Chất bán dẫn Graphene” GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 1 MỤC LỤC MỞ ĐẦU ....................................................................................................... 4 1. Lý do chọn đề tài................................................................................. 4 2. Mục đích nghiên cứu........................................................................... 6 3. Nhiệm vụ nghiên cứu .......................................................................... 6 4. Đối tượng nghiên cứu.......................................................................... 7 5. Phạm vi nghiên cứu............................................................................. 7 6. Phương pháp nghiên cứu ..................................................................... 7 NỘI DUNG.................................................................................................... 8 Chương 1: Cơ sở lý thuyết............................................................................ 8 1.1. Mạng tinh thể của vật rắn ............................................................... 8 1.1.1. Mạng tinh thể lý tưởng ...................................................... 8 1.1.2. Ô sơ cấp (ô cơ sở) ............................................................. 8 1.1.3. Phân loại các loại mạng tinh thể ........................................ 9 1.1.4. Sai hỏng mạng trong mạng tinh thể thực tế ..................... 12 1.2. Lý thuyết vùng năng lượng của vật rắn ........................................ 12 1.3. Cấu trúc graphite (than chì).......................................................... 15 1.4. Cấu trúc màng mỏng .................................................................... 16 1.5. Hiệu ứng Hall lượng tử ................................................................ 17 1.5.1. Hiệu ứng Hall.................................................................. 17 1.5.2. Hiệu ứng Hall lượng tử ................................................... 19 Chương 2: Sơ lược về chất bán dẫn ........................................................... 21 2.1. Khái niệm .................................................................................... 21 2.2. Cấu trúc miền năng lượng của chất bán dẫn ................................. 21 2.3. Các loại bán dẫn........................................................................... 22 2.3.1. Bán dẫn thuần ................................................................. 22 Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 2 2.3.2. Bán dẫn pha tạp chất ....................................................... 23 Chương 3: Chất bán dẫn Graphene .......................................................... 25 3.1. Khái niệm Graphene .................................................................... 25 3.2. Lịch sử ra đời Graphene ............................................................... 25 3.3. Tính chất của Graphene............................................................... 30 3.3.1. Graphene là vật liệu mỏng nhất trong tất cả các vật liệu.. 30 3.3.2. Graphene có tính dẫn điện và nhiệt tốt ............................ 30 3.3.3. Độ bền của Graphene ...................................................... 30 3.3.4. Graphene cứng hơn cả kim cương ................................... 31 3.3.5. Graphene hoàn toàn không để cho không khí lọt qua ...... 32 3.3.6. Graphene dễ chế tạo và dễ thay đổi hình dạng................. 32 3.3.7. Hiệu ứng Hall lượng tử trong Graphene .......................... 32 3.3.8. Chuyển động của điện tử trong Graphene........................ 34 3.4. Phân loại Graphene ..................................................................... 35 3.4.1. Graphene đơn .................................................................. 35 3.4.2. Graphene kép .................................................................. 36 3.4.2.1. Cấu tạo ............................................................... 36 3.4.2.2. Tính chất đặc biệt- độ rộng vùng cấm thay đổi. .. 37 3.4.3. Graphene mọc ghép đa lớp (MEG).................................. 41 3.5. Ưu điểm và nhược điểm của chất bán dẫn Graphene ................... 42 3.5.1. Ưu điểm của chất bán dẫn Graphene ............................... 42 3.5.2. Nhược điểm của chất bán dẫn Graphene ......................... 42 3.6. Các phương pháp chế tạo Graphene ............................................ 43 3.6.1. Phương pháp chemical exfoliation .................................. 43 3.6.2. Phương pháp micromechanical cleavage ......................... 43 3.6.3. Phương pháp băng keo Scotch ........................................ 44 3.6.4. Ma sát các cột graphite lên bề mặt silicon xốp ................ 44 Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 3 3.6.5. Cho các phân tử hydrocacbon đi qua bề mặt iridi ............ 45 3.6.6. Phương pháp tổng hợp graphene trên diện tích lớn.......... 45 3.6.7. Kết hợp siêu âm tách lớp và ly tâm. ................................ 45 3.6.8. Phương pháp bóc tách ..................................................... 45 3.6.9. Gắn kết dương cực trên nền thủy tinh.............................. 46 3.6.10. Chế tạo graphene trong một lóe sáng đèn flash.............. 47 3.7. Ứng dụng Graphene .................................................................... 48 3.7.1. Dây dẫn và điện cực trong suốt ....................................... 48 3.7.2. FET graphene.................................................................. 49 3.7.3. Chíp máy tính.................................................................. 50 3.7.4. Màn hình ti vi cảm ứng ................................................... 51 3.7.5. Chất phụ gia trong dung dịch khoan ................................ 52 3.7.6. Làm đế cho các mẫu nghiên cứu trong kính hiển vi điện tử truyền qua (TEM) ..................................................................... 53 KẾT LUẬN ................................................................................................. 56 TÀI LIỆU THAM KHẢO .......................................................................... 57 Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 4 MỞ ĐẦU 1. Lý do chọn đề tài Nền khoa học công nghệ trên thế giới đang phát triển một cách nhanh chóng nhất là các nước phát triển như Hoa Kỳ, Nhật Bản, Nga. Sự phát triển của khoa học công nghệ đã đem lại những diện mạo mới cho cuộc sống con người và công nghệ điện tử viễn thông. Hiện nay trên thế giới đang hình thành một khoa học và công nghệ mới, có nhiều triển vọng và dự đoán sẽ có tác động mạnh mẽ đến tất cả các lĩnh vực khoa học, công nghệ, kỹ thuật cũng như đời sống kinh tế- xã hội của thế kỷ 21. Đó là khoa học và công nghệ nano. Hiện nay, công nghệ điện tử truyền thống đang tiến đến những giới hạn cuối cùng của kích thước thang vi mô, khoa học công nghệ nano ra đời mở ra hướng nghiên cứu mới cho ngành điện tử với những linh kiện mới với kích thước nano. Theo dõi sự phát triển của khoa học công nghệ, vào cuối mỗi năm, tạp chí ScienceMag (Mỹ) đều điểm lại những sự kiện khoa học của thế giới trong năm và chọn ra 10 sự kiện nổi bật nhất, đặc biệt là chọn ra một sự kiện lớn nhất được gọi là Bước đột phá của năm. Theo tạp chí bước đột phá khoa học của năm 2009 là việc các nhà khoa học quốc tế phát hiện một bộ xương có niên đại 4,4 triệu năm tại Ethiopia, các sự kiện còn lại thuộc các lĩnh vực: Vật lý, khám phá vũ trụ, y học, liệu pháp gen và vật liệu graphene. Tâm điểm của lĩnh vực công nghệ vật liệu trong thập kỷ 2000 - 2009 xoay quanh những nghiên cứu về hai trạng thái mới của cacbon, đó là, ống nano cacbon và graphene. Kể từ khi được phát hiện và nghiên cứu vào đầu những năm 90 của thế kỷ trước, các nhà khoa học đã từng nhận định rằng, có vẻ như không có gì mà ống nano cacbon không thể làm được. Sự đóng góp của ống nano cacbon trong các ngành công nghiệp mũi nhọn hiện nay là khá phong phú, từ điện tử, động cơ siêu nhỏ, tới Hình 1: Màng Graphene Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 5 bộ nhớ, pin và trong cả lĩnh vực vũ trụ. Nhưng những nghiên cứu về graphene mới được công bố hồi đầu năm 2009, khẳng định loại vật liệu mới này đã nhanh chóng thu hút được sự quan tâm của các nhà khoa học, với độ cứng còn hơn cả kim cương, và là loại vật liệu mỏng nhất trong tất cả các loại vật liệu mà chúng ta đã từng tạo ra. Ngoài ra, tính dẫn điện của graphene rất lý tưởng. Do đó, các nhà khoa học hi vọng rằng đến năm 2020, Graphene có thể thay thế chất bán dẫn silicon. Hiện nay, vật liệu graphene đã mở ra hi vọng cho ngành điện tử. Nếu sản xuất có thể cải thiện, graphene sẽ cách mạng hóa ngành công nghệ năng lượng. Hiện nay, năng lượng mặt trời và gió, đang gặp khó khăn vì các phương pháp tồn trữ chưa thích nghi. Nhiều nhà khảo cứu nghĩ rằng các siêu tụ điện graphene có thể là giải pháp. Từ năm 2004, các nhà nghiên cứu ở Anh đã tìm ra một cách đơn giản để bóc những lớp phân tử dày đơn nguyên tử của các nguyên tử cacbon khỏi các khoanh graphite bằng băng keo. Từ đó tới nay họ đã cố gắng nghiên cứu dạng màng mỏng này. Năm 2009, họ đã có bước tiến mới, với hàng loạt các khám phá, những cách thức và những hiểu biết nền tảng mới để có thể tạo ra được những mảng graphene rộng và biến chúng thành những thiết bị mới. Ở Việt Nam hiện nay khi nhắc đến công nghệ nano, vật liệu nano thì không còn mới lạ nữa mà vấn đề này đang được nghiên cứu rất nhiều. Liên tiếp thời gian qua, ngành Khoa học công nghệ Việt Nam đón nhận những tin vui. Tại Hà Nội, một nhóm nghiên cứu trẻ thuộc Viện khoa học công nghệ vật liệu đã thành công khi cho ra đời sản phẩm vật liệu ống nano cacbon đa tường. Còn tại Thành Phố Hồ Chí Minh, một nhóm nghiên cứu thuộc Khu Hình 2: Cấu trúc 2D của graphene Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 6 Công nghệ cao cũng chế tạo thành công vật liệu ống nano cacbon. Lĩnh vực ống nano cacbon ở nước ta đã có thành công nhưng riêng chất bán dẫn Graphene còn là lĩnh vực rất mới ở nước ta hiện đang được một số nhà khoa học nghiên cứu. Chất bán dẫn Graphene là một lĩnh vực rất mới đối với khoa học nước ta. Đó chính là lí do tôi quyết định chọn đề tài này: “Chất bán dẫn Graphene”. 2. Mục đích nghiên cứu Cùng với sự phát triển của khoa học công nghệ thì lần lượt nhiều loại vật liệu mới cũng được khám phá và ứng dụng vào cuộc sống của con người. Công nghệ nano ra đời đã làm cho cuộc sống của con người tiện nghi hơn với các linh kiện điện tử nhỏ bé. Việc áp dụng những công nghệ hoàn toàn mới đã tạo điều kiện cho sản xuất phát triển theo chiều sâu, giảm hẳn tiêu hao năng lượng và nguyên liệu, giảm tác hại cho môi trường, nâng cao chất lượng sản phẩm và dịch vụ, thúc đẩy mạnh mẽ sự phát triển của sản xuất. Từ khi Graphene được khám phá thì các nhà khoa học dự báo Graphene là vật liệu có thể thay thế nguồn Si làm bán dẫn ngày đang cạn kiệt. Với vai trò quan trọng của chất bán dẫn Graphene tôi nghiên cứu đề tài này với mục đích đặt ra như sau: - Hiểu và nắm được cấu trúc, tính chất, ứng dụng của Graphene. - Nắm được vai trò quan trọng của Graphene. - Có cái nhìn tổng quan hơn về việc nghiên cứu tạo ra vật liệu mới. - Biết trào lưu chế tạo ra các vật liệu mới ngày nay. - Đề tài khái quát được tất cả các vấn đề liên quan đến Graphene. - Đề tài nêu được tầm quan trọng của Graphene trong cuộc sống của con người 3. Nhiệm vụ nghiên cứu Để hoàn thành tốt đề tài này nhiệm vụ cụ thể đặt ra là: Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 7 - Tổng quan và nghiên cứu các tài liệu liên quan đến đề tài. - Nghiên cứu cơ sở lý luận của chất bán dẫn Graphene. - Nghiên cứu những tính chất vượt trội của Graphene và ứng dụng của Graphene trong lĩnh vực điện tử. - Nghiên cứu lớp kép Graphene có độ rộng vùng năng lượng cấm có thể thay đổi và những ứng dụng của nó trong điện tử. So sánh được sự khác biệt giữa hai loại lớp đơn và lớp kép Graphene. - Nghiên cứu ưu điểm và nhược điểm của chất bán dẫn này. 4. Đối tượng nghiên cứu Để đạt được mục đích nghiên cứu và nhiệm vụ nêu ra tôi xác định đối tượng nghiên cứu như sau: - Cơ sở lý luận của chất bán dẫn Graphene. - Cấu trúc, tính chất, ưu nhược điểm của chất bán dẫn này. - Sự khác biệt giữa lớp đơn Graphene và lớp kép Graphene. - Phương pháp chế tạo ra Graphene và một số ứng dụng của nó trong ngành điện tử. - Đặc biệt nghiên cứu Graphene kép với độ rộng vùng cấm có thể thay đổi được. 5. Phạm vi nghiên cứu Đề tài nghiên cứu sơ lược về chất bán dẫn và đi sâu vào cấu tạo, tính chất, phương pháp chế tạo Graphene và một số ứng dụng của chất bán dẫn này vào cuộc sống. 6. Phương pháp nghiên cứu - Thu thập tài liệu trên mạng, một số sách. - Tổng hợp, xử lý, khái quát, phân tích tài liệu thu được. - Nghiên cứu lý thuyết, cơ sở lý luận. - Dịch và nghiên cứu tài liệu tiếng Anh. Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 8 NỘI DUNG Chương 1: Cơ sở lý thuyết 1.1 Mạng tinh thể của vật rắn 1.1.1 Mạng tinh thể lý tưởng Trong các vật rắn, nguyên tử, phân tử được sắp xếp một cách đều đặn, tuần hoàn trong không gian tạo thành mạng tinh thể. Mạng tinh thể lý tưởng là mạng lưới không gian vô tận mà tại các nút mạng là các hạt tạo nên tinh thể có tính chất vô hạn tuần hoàn. Các nút mạng được gọi là gốc mạng. Các gốc mạng đều đồng nhất về thành phần cũng như quy luật sắp xếp. Trong mạng tinh thể lý tưởng, nếu ta chọn một nút làm gốc thì tọa độ của nút liên tiếp được xác định nhờ vector tịnh tiến của mạng tinh thể: 1 1 2 2 3 3R n a n a n a       , trong đó: 1 2 3, ,a a a    được gọi là vector tịnh tiến cơ sở, 1 2 3, ,n n n là các số nguyên dương âm. Độ lớn của các vector cở sở được gọi là chu kỳ dịch chuyển hay hằng số mạng. Với một mạng tinh thể bất kỳ, có vô số cách chọn bộ ba vector tịnh tiến cơ sở. Cấu trúc của mạng tinh thể gồm có một ô sơ cấp và rất nhiều các nguyên tử sắp xếp theo một cách đặc biệt. 1.1.2 Ô sơ cấp (ô cơ sở) Từ bộ ba vector tịnh tiến cơ sở, ta có thể dựng nên một hình hộp bình hành được gọi là ô sơ cấp. Có thể xem ô sơ cấp là viên gạch đồng nhất để tạo nên mạng tinh thể. 1 2 3 1 . a a a a               Để mô tả cấu trúc tinh thể ta coi nó gồm các ô sơ cấp lặp lại tuần hoàn trong không gian. Ứng với vector tịnh tiến nguyên tố hay vector tịnh tiến đơn 1a  2a  3a  Hình 3: Ô sơ cấp Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 9 vị , chúng ta có ô mạng nguyên tố hay ô mạng đơn vị. Ô nguyên tố chỉ chứa một nút mạng, trong khi ô đơn vị lại chứa nhiều hơn một nút mạng. Tuy có rất nhiều cách chọn các vector nguyên tố, nhưng thể tích của ô nguyên tố sẽ không thay đổi. Đó là thể tích của ô cơ sở, nó được tính theo công thức:      1 2 3 2 3 1 3 1 2a a a a a a a a a             . Kích thước của ô cơ sở theo các chiều khác nhau được gọi là các thông số mạng hay hằng số mạng. Tùy thuộc vào tính chất đối xứng của ô cơ sở mà tinh thể đó thuộc vào một trong các nhóm không gian khác nhau. Đối với mỗi cấu trúc tinh thể, tồn tại một ô cơ sở quy ước, thường được chọn để mạng tinh thể có tính đối xứng cao nhất. Tuy vậy, ô cơ sở quy ước không phải luôn luôn là lựa chọn duy nhất. Ngoài khái niệm ô cơ sở đã nêu trên, người ta còn sử dụng khái niệm ô nguyên tố Wigner – Seitz, nó được vẽ sao cho nút mạng nằm ở tâm của ô. Hình dạng của ô Wigner – Seitz phần nào đặc trưng cho các phép đối xứng trong mạng. Ô Wigner – Seitz có một nguyên tử trong một ô, có tính đối xứng trung tâm, thể tích của nó đúng bằng thể tích của ô nguyên tố. 1.1.3 Phân loại các loại mạng tinh thể Hình 5: Ô Wigner – Seitz trong mạng 2 chiều. Hình 4: Ô Wigner – Seitz trong mạng 3 chiều. Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 10 Tuy có rất nhiều cách để chọn ô mạng cơ sở cho một mạng cụ thể nhưng Bravais đã đề xuất một số tiêu chuẩn để chọn ô mạng cơ sở sao cho chúng chứa đầy đủ nhất tính chất đối xứng của mạng và đồng thời có thể xem như một đơn vị tuần hoàn của mạng. Các tiêu chí đó bao gồm: - Ô mạng phải cùng hệ với hệ của tinh thể vĩ mô. - Số cạnh bằng nhau và số góc bằng nhau của ô mạng phải nhiều nhất. - Nếu có góc vuông giữa các cạnh thì góc vuông đó phải nhiều nhất. - Thể tích của ô mạng phải là nhỏ nhất. Để xác định được một ô mạng, chúng ta cần xác định độ lớn của ba vector 1 2 3, ,a a a    và vị trí tương đối của chúng trong không gian (góc α, β, γ). Như vậy, ta có tất cả sáu thông số để xác định được mạng không gian. Bằng cách lập các tổ hợp khả dĩ của 6 thông số trên, và thêm vào những trường hợp có các nút ở vị trí tâm của các mặt bên và tâm của ô mạng, Bravais đã chứng minh được rằng chỉ đó 14 tổ hợp độc lập (bảng 1). Mỗi tổ hợp ứng với một ô mạng và được gọi là ô mạng Bravais. Mạng Bravais là một tập hợp các điểm tạo thành từ một điểm duy nhất theo các bước rời rạc xác định bởi các véc tơ cơ sở. Tất các các vật liệu có cấu trúc tinh thể đều thuộc vào một trong các mạng Bravais này (không tính đến các giả tinh thể). Cấu trúc tinh thể là một trong các mạng tinh thể với một ô đơn vị và các nguyên tử có mặt tại các nút mạng của các ô đơn vị nói trên. Hình 6: Ba vecto cơ sở 1a  2a  3a  Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 11 Bảng 1: Bảng 14 ô mạng Bravais Hệ tinh thể Mạng tinh thể Tam tà Đơn giản tâm đáy Đơn tà Đơn giản tâm đáy tâm khối tâm mặt Trực giao Lục giác Tam giác đơn giản tâm khối Bốn phương đơn giản tâm khối tâm mặt Lập phương Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 12 1.1.4 Sai hỏng mạng trong mạng tinh thể thực tế Các tinh thể thực trong phòng thí nghiệm hay trong kỹ thuật không thỏa mãn các điều kiện của tinh thể lý tưởng. Tinh thể thực tế có kích thước hữu hạn nên tính đối xứng tịnh tiến của tinh thể không thỏa mãn được. Các hạt tạo nên tinh thể không nằm yên ở nút mạng tinh thể mà luôn luôn dao động xung quanh vị trí cân bằng với tần số và biên độ phụ thuộc vào nhiệt độ của tinh thể. Những dao động này làm cho tính tuần hoàn của mạng tinh thể bị vi phạm. Hoặc xuất hiện các điểm bất thường có mặt trong cấu trúc tinh thể lý tưởng. Các sai hỏng này có vai trò quyết định đến tính chất cơ và điện của các tinh thể thực. Đặc biệt là bất định xứ trong tinh thể cho phép tinh thể biến dạng dễ dàng hơn nhiều so với tinh thể hoàn hảo. Có 4 loại sai hỏng mạng: - Sai hỏng điểm - Sai hỏng đường - Sai hỏng mặt - Sai hỏng khối Những sai hỏng này dẫn đến bị xô mạng hoặc bị lệch mạng. Kết quả làm tính chất, đặc tính của vật rắn thay đổi theo. 1.2 Lý thuyết vùng năng lượng của vật rắn Trong tinh thể electron chuyển động không hoàn toàn tự do vì các ion dương sắp xếp một cách tuần hoàn, đều đặn. Như vậy, electron khi bắt khỏi nguyên tử sẽ chuyển động trong trường thế tuần hoàn của các ion dương. Để xác định trạng và phổ năng lượng của electron trong trường thế tuần hoàn của mạng tinh thể ta phải giải phương trình Schrodinger: ^ 2 2 ( ) ( ) ( ) ( ) ( ), 2 k k k k H r E r V r r E r m                          Đề tài: Chất bán dẫn Graphene GVHD: Trương Minh Đức SVTH: Lê Thị Bích Liên 13 với ( ) ( )V r V r R    là thế năng trường tuần hoàn. Khi giải bài toán này cho ta một bức tranh khái quát về sơ đồ vùng năng lượng: gồm các vùng năng lượ