Trong những năm đây, các kỳ khảo sát chất lượng, thi học sinh giỏi bậc THCS và các kỳ thi tuyển sinh vào trường THPT thường gặp những bài toán yêu cầu tìm GTNN, GTLN của một đại lượng nào đó. Các bài toán này gọi chung là các bài toán cực trị.
Các bài toán cực trị rất phong phú và đa dạng mang nội dung vô cùng sâu sắc trong việc giáo dục tư tưởng qua môn toán. Bài toán đi tìm cái tốt nhất, rẻ nhất, ngắn nhất, dài nhất. trong một bài toán. Để dần dần hình thành cho học sinh thói quen đi tìm giải pháp tối ưu cho một công việc nào đó trong cuộc sống sau này.
Các bài toán cực trị Đại số ở bậc THCS có ý nghĩa rất quan trọng đối với các em học sinh. Ở bậc THCS chưa có lý thuyết đạo hàm nên phải bằng cách giải thông minh, tìm ra các biện pháp hữu hiệu và phù hợp với trình độ kiến thức toán học ở bậc học để giải quyết loại toán này.
Các bài toán về cực trị Đại số ở bậc THCS góp phần không nhỏ vào việc rèn luyện tư duy cho học sinh.
Với ý nghĩa như vậy, việc hướng dẫn học sinh nắm được các phương pháp giải các bài toán cực trị là vấn đề quan trọng. Qua thực tế giảng dạy bản thân đã rút ra được một số phương pháp để giải các bài toán cực trị nhằm giúp thêm tài liệu cho việc bồi dưỡng học sinh khá - giỏi toán.
14 trang |
Chia sẻ: ngtr9097 | Lượt xem: 4416 | Lượt tải: 5
Bạn đang xem nội dung tài liệu Đề tài Một số phương pháp giải các bài toán cực trị của bậc Trung học cơ sở, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
A. PHẦN MỞ ĐẦU
I. LÝ DO CHỌN ĐỀ TÀI:
Trong những năm đây, các kỳ khảo sát chất lượng, thi học sinh giỏi bậc THCS và các kỳ thi tuyển sinh vào trường THPT thường gặp những bài toán yêu cầu tìm GTNN, GTLN của một đại lượng nào đó. Các bài toán này gọi chung là các bài toán cực trị.
Các bài toán cực trị rất phong phú và đa dạng mang nội dung vô cùng sâu sắc trong việc giáo dục tư tưởng qua môn toán. Bài toán đi tìm cái tốt nhất, rẻ nhất, ngắn nhất, dài nhất... trong một bài toán. Để dần dần hình thành cho học sinh thói quen đi tìm giải pháp tối ưu cho một công việc nào đó trong cuộc sống sau này.
Các bài toán cực trị Đại số ở bậc THCS có ý nghĩa rất quan trọng đối với các em học sinh. Ở bậc THCS chưa có lý thuyết đạo hàm nên phải bằng cách giải thông minh, tìm ra các biện pháp hữu hiệu và phù hợp với trình độ kiến thức toán học ở bậc học để giải quyết loại toán này.
Các bài toán về cực trị Đại số ở bậc THCS góp phần không nhỏ vào việc rèn luyện tư duy cho học sinh.
Với ý nghĩa như vậy, việc hướng dẫn học sinh nắm được các phương pháp giải các bài toán cực trị là vấn đề quan trọng. Qua thực tế giảng dạy bản thân đã rút ra được một số phương pháp để giải các bài toán cực trị nhằm giúp thêm tài liệu cho việc bồi dưỡng học sinh khá - giỏi toán.
II. ĐỐI TƯỢNG NGHIÊN CỨU:
Áp dụng với học sinh khối 8, 9. Là học sinh khá giỏi tham gia trong các đội tuyển HSG trường, học sinh thi đồng đội Toán tỉnh.
III. NHIỆM VỤ CỦA ĐỀ TÀI:
Giúp cho học sinh làm quen và có một số hiểu biết về một số dạng toán cực trị thường gặp.
Đề tài trình bày một số phương pháp giải các bài toán cực trị của bậc THCS. Mỗi phương pháp được trình bày theo cấu trúc gồm: Cơ sở lý thuyết và ví dụ minh hoạ hoặc từ bài tập cụ thể, rút ra nhận xét tổng quát.
IV. PHẠM VI ĐỀ TÀI:
Đề tài chỉ đề cập tới một số phương pháp giải một số loại toán cực trị đại số thường gặp trong chương trình toán học THCS, đối tượng mà đề tài nhằm tới là học sinh khá, giỏi toán THCS.
V. PHƯƠNG PHÁP NGHIÊN CỨU:
Tổng hợp, hệ thống từ việc dạy bồi dưỡng học sinh khá giỏi, tham khảo môt số tài liệu có liên quan.
B. PHẦN NỘI DUNG
I. Kiến thức:
1. Cho biểu thức f(x, y…)
Ta nói M là giá trị lớn nhất (GTLN) của biểu thức f(x, y…), kí hiệu max f = M, nếu hai điều kiện sau được thỏa mãn:
- Với mọi x, y … để f(x, y…) xác định thì
F(x, y…) M ( M là hằng số )
- Tồn tại x0 , y0 , … sao cho
f(x0, y0 ,...) = M
2. Cho biểu thức f(x, y…)
Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x, y…), kí hiệu max f = m, nếu hai điều kiện sau được thỏa mãn:
- Với mọi x, y … để f(x, y…) xác định thì
F(x, y…) m ( m là hằng số )
- Tồn tại x0 , y0 , … sao cho
f(x0, y0 ,...) = m
II. Phương pháp giải các bài toán tìm giá trị lớn nhất, nhỏ nhất của một biểu thức đại số bằng cách đưa về dạng A(x) 0 { hoặc A(x) 0 }
- Để tìm giá trị nhỏ nhất của một biểu thức A(x) ta cần:
+ Chứng minh rằng A(x) k với k là hằng số.
+ Chỉ ra dấu "=" có thể xảy ra.
- Để tìm giá trị lớn nhất của một biểu thức A(x) ta cần:
+ Chứng minh rằng A(x) k với k là hằng số.
+ Chỉ ra dấu "=" có thể xảy ra.
Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức A(x) = (x - 1)2 + (x-3)2.
(Nâng cao và phát triển Toán 8)
Giải:
A(x) = (x-1)2 + (x-3)2 = x2-2x+1+x2-6x+9=2(x2-4x+5)=2(x-2)2+22
Vì (x-2)2 0 với x. Vậy Min A(x) = 2 khi x = 2
Ví dụ 2: Tìm giá trị lớn nhất của biểu thức B(x) = -5x2 - 4x+1
(Nâng cao và phát triển Toán 8)
Giải : Từ B(x) = -5x2 - 4x+1 ta có B(x)= -5(x2+x)+1
=
Vì với nên
Max B(x) =
Bài tập vận dụng:
Tìm GTLN của A= 1 – x2 + 3x
Tìm GTNN của B= x2 – 5x + 1
Cho tam thức bậc hai C= ax2 + bx + c
Tim GTLN của C nếu a < 0.
Tìm GTNN của C nếu a > 0.
III. Phương pháp giải các bài toán tìm giá trị lớn nhất, nhỏ nhất của một biểu thức đại số bằng cách đưa về dạng hoặc
Ví dụ 3: Tìm giá trị lớn nhất của biểu thức đại số (Nâng cao và phát triển Toán 8)
Giải: Từ
Ta có A(x) =
Vì (x+1)2 0 với x nên (x+1)2+22 với x.
Do đó:
Vậy A(x) =
Max A(x) = khi (x+1)2 = 0 x = -1
Ví dụ 4: Tìm giá trị nhỏ nhất của B(x) = với
(Nâng cao và phát triển Toán 8)
Giải: Từ B(x) =
Vì (x- 4)2 0 với nên (x- 4)2+6 6.
Nên
Min B(x) = khi (x- 4)2 = 0 x = 4
Bài tập vận dụng:
Tìm GTLN, GTNN của các biểu thức sau ( nếu có ):
a/. b/.
c/. d/.
IV. Tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức đại số bằng cách áp dụng bất đẳng thức Cosi.
- Bất đẳng thức Cosi cho 2 số.
Cho a, b không âm, ta có bất đẳng thức
Dấu đẳng thức xảy ra khi và chỉ khi a = b
- Bất đẳng thức Cosi cho n số:
Cho n số a1, a2, ....an không âm, ta có bất đẳng thức:
Dấu đẳng thức xảy ra khi và chỉ khi a1 = a2 = ... = an
+ Bài toán:
a. Chứng minh rằng, nếu hai số dương có tích không đổi thì tổng của chúng nhỏ nhất khi và chỉ khi hai số đó bằng nhau.
b. Chứng minh rằng, nếu hai số dương có tổng không đổi thì tích của chúng đạt giá trị lớn nhất khi và chỉ khi hai số đó bằng nhau.
(Nâng cao và phát triển Toán 8)
Giải:
a. Ta cần chứng minh rằng với x >0; y > 0 và xy = k (không đổi) thì x+y đạt giá trị nhỏ nhất khi x = y.
Thật vậy, áp dụng bất đẳng thức Cosi cho hai số dương ta có:
x + y mà xy = k (không đổi)
Nên ta có: x+y (1)
Vậy tổng P = x + y lấy giá trị nhỏ nhất x + y = 2 khi x = y
b. Tương tự trên nếu hai số dương x và y có x + y = k (hằng số).
Từ (x+y)2 4xy xy
Vậy tích Q = xy lấy giá trị lớn nhất bằng khi x = y
Chúng ta sẽ vận dụng kết quả của hai bất đẳng thức trên để giải các bài toán cực trị đại số.
Ví dụ 5: Tìm giá trị lớn nhất của A(x) = ( x2 - 3x + 1) ( 21 + 3x - x2 )
(Nâng cao và phát triển Toán 8)
Giải: Các biểu thức x2-3x+1 và 21+3x-x2 có tổng không đổi (bằng 22) nên tích của chúng lớn nhất khi và chỉ khi
x2 - 3x + 1 = 21+ 3x - x2 x2 - 3x – 10 = 0 x1 = 5 ; x2 = -2.
Khi đó A=11.11 = 121
Vậy Max A = 121 x = 5 hoặc x = -2
Ví dụ 6: Tìm giá trị nhỏ nhất của
B(x) = với x > 0. (Nâng cao và phát triển Toán 8)
Giải: Từ B(x) = Ta có B(x) = 8x + 2 + . Hai số 8x và là hai số dương, có tích không đổi (bằng 4) nên tổng của chúng nhỏ nhất khi và chỉ khi 8x = 16x2 =1x = (x>0)
Vậy Min B =
Bài tập vận dụng:
Tìm GTNN của
a/. A= ( a + b ) với a, b > 0
b/. B= ( a + b + c ) với a, b, c > 0
c/. C= ( a + b + c + d ) với a, b, c, d > 0
V. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức chứa nhiều biến số:
Ví dụ 7: Tìm giá trị của m và p sao cho:
A= m2 - 4mp + 5p2 + 10m - 22p + 28 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó.
( Báo toán học tuổi trẻ )
Giải:
A = (m2 -4mp + 4p2 ) + (p2 -2p + 1) + 27 + 10m - 20p
= (m-2p)2 + (p-1)2 27 + 10(m-2p)
Đặt X = m-2p. Ta có A=x2 + 10X + 27 + (p-1)2
= (X2 + 10X + 25) + (p-1)2 + 2 = (X+5)2 + (p-1)2 + 2
Ta thấy: (X + 5)2 0 với m, p; (p-1)2 0 p
Do đó: A đạt giá trị nhỏ nhất khi:
Vậy Min A=2 khi m=-3; p=1.
Ví dụ 8:Tìm các giá trị của x, y, z sao cho biểu thức sau đây đạt giá trị nhỏ nhất P(x, y, z) = 19x2 + 54y2 + 16z2 - 16xz - 24yz + 36xy + 5
Giải: Khi gặp một biểu thức chứa nhiều biến số, ta cấn biến đổi biểu thức đã cho về tổng các biểu thức không âm.
Ta có: P(x, y, z) = (9x2 + 36xy + 36y2) + (18y2 - 24yz+8z2) +(8x2 16xy+8z2) + 2x2 + 5 = 9(x+2y)2 + 2(3y - 2z)2 + 8(x-z)2 + 2x2 + 5.
Ta thấy: (x+2y)2 0 với x, y.
(3y-2z)2 0 với y,z
(x-z)2 0 với x, z
x2 0 với x, y.
Biểu thức P(x,y,z) đạt giá trị nhỏ nhất khi các hạng tử (x+2y)2, (3y-2z)2; (x-z)2, x2 đạt giá trị nhỏ nhất cùng một lúc hay nói cách khác chúng phải có giá trị đồng thời bằng 0, nghĩa là hệ phương trình sau đây có nghiệm.
Vậy Min P(x,y,z) = 5 khi x = 0, y=0, z = 0.
- Tổng quát: Khi gặp P = A + B + C_+ ...+
Với A k12, B k22, C k32, ...... thì ta có thể kết luận P đạt giá trị nhỏ nhất khi A, B, C ..... đạt giá trị nhỏ nhất cùng một lúc và khi đó
P(min) = k12+k22+k32+...
Để tìm ra các biến số tương ứng với P(min) ta giải hệ phương trình:
Ví dụ 9: Tìm giá trị nhỏ nhất của biểu thức:
A=.
Trong đó x;y;z;t là các số hữu tỉ
Giải:
Ta có : A=
Vì và nên A
Dấu đẳng thức xảy ra khi và chỉ khi
Từ (1) ta có: y=. Từ (2) ta có:
Thay vào (3) ta được:
x2 =400 x= 20
- Với x = 20 ta có y = 28; z = 30
- Với x = -20 ta có y = -28; z = -30
Ngoài ra, từ (4) ta có: t=
Vậy giá trị nhỏ nhất của A bằng 2004, đạt được khi
(x;y;z;t) = (20;28;30; )
Hoặc (x;y;z;t) = (-20;-28;-30; )
Bài tập vận dụng:
Tìm GTNN của các biểu thức:
a. x2 - 2xy + 2y2 + 2x – 10y + 17
b. 2x2 + 2xy + 5y2 - 8x – 22y
VI. Giải các bài toán cực trị đại số bằng phương pháp sử dụng bất đẳng thức Bunhiacopxki.
1. Bất đẳng thức Bunhiacopxki.
Cho 2n số a1, a2...., an; b1, b2, ....bn ta luôn có: (a1b1 + a2b2+....+ anbn) (a12 + a22 + .... + an2)(b12 + b22 + ....+ bn2).
Dấu bằng xảy ra khi và chỉ khi:
2. Các ví dụ:
Ví dụ 10: Tìm các giá trị x, y, z để sao cho biểu thức sau đây đạt giá trị nhỏ nhất P = x2 + y2 + z2. Tìm giá trị nhỏ nhất đó biết rằng x+y+z = 1995
Giải: áp dụng bất đẳng thức Bunhiacopxki cho các bộ số: 1, 1, 1; x, y, z
Ta có: (x.1+y.1+z.1)2 (12 + 12 + 12) (x2 + y2 + z2)
Hay: (x+y+z)2 3(x2 + y2 + z2)
Từ đó ta có P = x2 + y2 + z2 mà x+y+z = 1995 => Ta có:
P= x2 + y2 + z2 với x, y, z
Pmin = khi hay x = y = z
Mà x+y+z = 1995 x=y=z = =665
Ví dụ 11: Cho x2 + y2 =52. Tìm giá trị lớn nhất của A =
Giải:
áp dụng bất đẳng thức bunhiacôpxki cho các bộ số 2, 3; x,y, ta có:
(2.x+3.y)2 (22 + 32 )(x2 + y2)
(2x+3y)2 13.52262
26
Max A = 26
Thay vào x2 + y2 = 52 ta có x2 +
Vậy Max A = 26 x=4; y=6 hoặc x= - 4; y= - 6
Bài tập vận dụng:
Cho x2 + y2 = 52. Tìm GTLN của A= 2x + 3y
VII. Phương pháp giải các bài toán cực trị đại số thoả mãn một hệ các điều kiện nào đó:
Ví dụ 12: Tìm giá trị nhỏ nhất của biểu thức:
P(x,y) = 6x+4y thoả mãn điều kiện
Giải: Từ P(x,y) = 6x+4y với x>0; y > 0 do đó 6x > 0; 4y > 0
=> [P(x,y)]2 = (6x+4y)2 4.6x.4y=96.xy
Vì xy=216(gt) => [P(x,y)]296.216=20736
loại vì P(x,y) >0
Min P(x,y) = 144 khi x= 12; y = 18
Ví dụ 13: Tìm giá trị lớn nhất của A(x,y,z) = xyz (x+y)(y+z)(z+x)
biết x, y, z 0 và x+y+z=1.
Giải: áp dụng bất đẳng thức Cosi cho 3 số không âm x, y, z ta có:
1 = x+y+z 3 (1)
2 = (x+y)+(y+z)+(z+x) 3 (2)
Nhân từng vế của (1) với (2) (do hai vế đều không âm)
Ta có: 2
Max A = khi và chỉ khi x=y=z=
Bài tập vận dụng:
Cho x, y, z > 0 và x + y + z = 1. Tìm GTNN của P=
Cho x, y, z > 0 ; z 60 và x + y + z = 100. Tìm GTLN của
Q = xyz
VIII. Phương pháp dùng tam thức bậc hai:
1. Đổi biến để đưa về tam thức bậc hai đối với biến mới.
Ví dụ 14: Tìm giá trị lớn nhất của A = x +
Giải: Điều kiện x 2
Đặt = y 0. Ta có y2 = 2-x
A = 2-y2 + y =
Max A =
2. Đổi biến để đưa về bất phương trình bậc hai đối với biến mới.
Ví dụ 15:
Tìm giá trị nhỏ nhất, giá trị lớn nhất của A= x2 + y2.
Biết rằng x2 (x2 + 2y2 -3) + (y2 -2)2 =1
Giải: Từ x2 (x2 + 2y2 -3) + (y2 -2)2 =1 Suy ra: (x2 + y2)2 - 4(x2 + y2) +3=-x2 0
Do đó: A2 - 4A + 30 (A-1)(A-3) 0 1A3
Min A=1 x=0 khi đó y=1
Min A=3 x=0 khi đó y=
3. Đưa về phương trình bậc hai và sử dụng điều kiện 0
Ví dụ 16: Tìm giá trị lớn nhất, nhỏ nhất của A=
Giải: Biểu thức A nhận giá trị a khi và chỉ khi phương trình ẩn x sau đây có nghiệm a = (1)
Do x2 +x+1 =
Nên (1) ax2 + ax+a=x2 -x+1
(a-1)x2 + (a-1)x+a-1=0 (2)
Trường hợp 1: Nếu a=1 thì (2) có nghiệm x=0
Trường hợp 2: Nếu a 1 để (2) có nghiệm, cần và đủ là 0
=> = (a+1)2 - 4(a-1)2 0
(a+1+2a-2)(a+1-2a+2) 0
(3a-1)(a-3)0
Với a = hoặc a = 3 thì nghiệm của (2) là x=
Với a = thì x = 1; với a = 3 thì x = -1
Gộp cả hai trường hợp 1 và 2 ta có
Min A= khi và chỉ khi x = 1
Max A= 3 khi và chỉ khi x= -1
Bài tập áp dụng:
Tìm GTNN của M= , với x #
N =
P =
IX. Giải bài toán cực trị chứa dấu giá trị tuyệt đối.
Kiến thức: * .Dấu = xảy ra khi ab
* . Dấu = xảy ra khi ab> 0 và
Ví dụ 17: Tìm GTNN của biểu thức A=
Giải: Ta có A =
A = . Áp dụng bất đẳng thức trên, ta được
A =
=> A 4.
Vậy Min A= 4, khi (x – 3)(7 – x) 0 3 x 7
Ví dụ 18: Tìm GTLN của biểu thức: B=
Giải: Áp dụng BĐT , ta có:
B=
Vậy Max B = 2007. Dấu = xảy ra khi: x - 1003.
Bài tập vận dụng:
Tìm GTNN của
C=
D=
2. Tìm GTLN của E= , với 0 x, y, z 3.
PHẦN C: PHẦN KẾT LUẬN
Toán cực trị Đại số là một dạng toán khó đối với học sinh. Để giải loại toán này cần phải biết vận dụng nhiều phương pháp khác nhau một cách linh hoạt. Trên đây là một số phương pháp cơ bản mà trong quá trình giảng dạy thực tế hay được sử dụng để giải các bài toán cực trị đại số. Với phương pháp hướng dẫn học sinh từ các bài tập cụ thể khái quát thành dạng tổng quát, từ đó học sinh vận dụng để giải các bài tập.
Qua quá trình hướng dẫn một cách cụ thể như vậy, học sinh đã biết vận dụng một cách linh hoạt các phương pháp giải bài toán vào giải các bài tập cụ thể từ đơn giản đến phức tạp. Đối với học sinh giỏi các em đã biết sử dụng kết hợp các phương pháp để giải được các bài toán cực trị đại số ở dạng khó hơn. Qua đó giúp học sinh hứng thú khi gặp loại bài toán này nói riêng và học môn toán nói chung.
Trên đây là một kinh nghiệm được tôi rút ra từ quá trình dạy học. Đề tài này tôi còn tiếp tục nghiên cứu. Trong bài có gì thiếu sót mong được sự đóng góp chân thành của các đồng nghiệp.
Xin chân thành cảm ơn !
Định Tân, Ngày 10 tháng 04 năm 2011
NGƯỜI THỰC HIỆN
Lưu Việt Thu