Đề tài Nghiên cứu chế tạo mạch đếm sản phẩm

Triger trong tiếng anh gọi là Flip - Flop viết tắt là FF. Nó là một phần tử nhớ hai trạng thái cân bằng ổn định tương ứng với hai mức logic 0 và 1. Dưới tác dụng của các tín hiệu điều khiển ở lối vào, triger có thể chuyển về một trong hai trạng thái cân bằng, và giữ nguyên trạng thái đó chừng nào chưa có tín hiệu điều khiển làm thay đổi trạng thái của nó. Trạng thái tiếp theo của triger phụ thuộc không những vào tín hiệu lối vào mà còn phụ thuộc vào trạng thái hiện hành của nó. Đang chạy, nếu ngừng các tín hiệu điều khiển ở lối vào vẫn có khả năng giữ trạng thái hiện hành của mình trong thời gian dài, chừng nào mà còn điện nuôi mạch triger không bị ngắt thì thông tin dưới dạng nhị phân lưu giữ trong triger vẫn được duy trì. Như vây, nó được sử dụng như một phần tử nhớ. Triger được cấu thành từ một nhóm các cổng logic, mặc dù các cổng logic tự thân nó không có khả năng lưu trữ, nhưng có thể nối nhiều cổng với nhau theo cách thức cho phép lưu trữ được thông tin. Mỗi sự sắp xếp cổng khác nhau sẽ cho ra các triger khác nhau.

doc40 trang | Chia sẻ: lvbuiluyen | Lượt xem: 5113 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Đề tài Nghiên cứu chế tạo mạch đếm sản phẩm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT HƯNG YÊN ĐỒ ÁN MÔN HỌC Tên đề tài : ”NGHIÊN CỨU CHẾ TẠO MẠCH ĐẾM SẢN PHẨM” Giảng viên hướng dẫn : Nguyễn Trung Thành Nhóm Sinh viên thực hiện : Nguyễn Văn Hiếu Tiêu Văn Tiến Lớp : ĐTK10.1 NhËn xÐt, ®¸nh gi¸ cña c¸n bé h­íng dÉn .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. .................................................................................................................. Hưng Yên, Ngày…Tháng...Năm 2013 Giảng viên hướng dẫn Nguyễn Trung Thành LỜI MỞ ĐẦU Ngày nay cùng với sự phát triển của các ngành khoa học kỹ thuật,kỹ thuật điện tử mà trong đó là kỹ thuật số đóng vai trò quan trọng trong mọi lĩnh vực khoa học kỹ thuật,quản lý, tự động hóa...Với việc sử dụng khoa học kỹ thuật trong cuộc sống đã làm cho chất lượng cuộc sống được nâng cao rõ rệt, đặc biệt trong các xí nghiệp đã làm nâng cao nâng suất lao động. Đó là các mạch điện tử được ứng dụng trong các dây chuyền sản xuất đã lần lượt ra đời thay cho các công nhân đứng máy. Các mạch điện tử này cho độ chính xác cao và rất dễ sử dụng. Do đó chúng ta phải nắm bắt và vận dụng nó một cách có hiệu quả nhằm góp phần vào sự phát triển của khoa học kỹ thuật thế giới nói chung và sự phát triển kỹ thuật điện tử nói riêng. Xuất phát từ những đợt đi thực hành, thăm quan các xí nghiệp sản xuất và các nhà máy, chúng em đã thấy được nhiều khâu tự động hóa trong quá trình sản xuất. Một trong những khâu đơn giản trong dây chuyền sản xuất tự động hóa đó là số lượng sản phẩm làm ra được đếm một cách tự động. Tuy nhiên đối với những doanh nghiệp vừa và nhỏ thì việc tự động hóa chưa được áp dụng trong những khâu đếm sản phẩm, đóng bao bì mà vẫn còn sử dụng nhân công. Chúng em là nhhững sinh viên năm thứ 2 của trường ĐH SPKT Hưng Yên. Từ những điều đã được thấy đó và những kiến thức đã được thầy cô dạy bảo, tìm tòi học hỏi trong thực tế...chúng em muốn làm một điều gì đó để góp phần giúp người lao động bớt mệt nhọc chân tay mà lại có thể đếm được nhiều sản phẩm, với số lượng lớn tùy theo yêu cầu của người mua, hay người sử dụng nó. Yêu cầu của mạch đếm sản phẩm là chạy một cách chính xác, ổn định,gọn nhẹ,dễ lắp đặt, dễ sử dụng, giá thành rẻ và ít tốn điện năng tiêu thụ.Nên chúng em quyết định thiết kế một mạch đếm sản phẩm vì nó rất gần gũi với thực tế đồng thời cũng là một lần chúng em thực tập,vận dụng kiến thức đã được học để thiết kế và chế tạo ra một sản phẩm có thể được đem ứng dụng rộng rãi, đóng góp một phần nhỏ cho xã hội. Dưới sự hướng dẫn của thầy Nguyễn Trung Thành nhóm sinh viên chúng em thực hiện đề tài:” nghiên cứu, thiết kế, chế tạo mạch đếm sản phẩm”. Trong quá trình hoàn thành đề tài này chúng em xin chân thành cảm ơn thầy, cô trong khoa Điện– Điện tử và đặc biệt là thầy Nguyễn Trung Thành đã giúp đỡ chúng em. Do thời gian hoàn thành và kiến thức còn hạn chế nên chắc chắn không tránh khỏi những thiếu sót và chưa hợp lý, chúng em rất mong nhận được ý kiến đóng góp của thầy cô và bạn bè để đề tài này được hoàn thiện hơn. Chúng em xin trân thành cảm ơn ! MỤC LỤC CHƯƠNG 1 TỔNG QUAN VỀ MẠCH ỨNG DỤNG VÀ Ý TƯỞNG THỰC HIỆN Tổng quan về mạch. Với yêu cầu của đề tài chúng em đã nghiên cứu, tính toán và đưa ra linh kiện cần dùng trong mạch đó là: led thu phát hồng ngoại; 3 bộ mã hoá BCD dùng IC74LS90; 3 bộ giải mã BCD sang mã led 7 thanh dùng IC7447; 3 led 7 thanh có anot chung để hiển thị. IC LM324N, IC logic 74LS14. Với những linh kiện này chúng em đã dược sự chấp nhận của giáo viên hướng dẫn thiết kế và chế tạo thành công mạch “ Mạch đếm số sản phẩm được hiển thị led 7 thanh”. 1.2. Ý tưởng thực hiện. Trong thời đại hiện nay, dưới sự bùng nổ và phát triển của công nghệ. Đặc biệt là ngành công nghệ điện tử kỹ thuật số thì những mạch ứng dụng vào thực tế càng nhiều. Các thiết bị điện tử số dù đơn giản hay là hiện đại đến đâu đi nữa thì đều hướng tới sự tiện lợi cho người sử dụng. Trước những yêu cầu đòi hỏi cấp thiết của cuộc sống. Nhóm đồ án chúng em đã bắt tay vào tìm hiểu và thiết kế “mạch đếm số sản phẩm hiển thị led trên 7 thanh”. Dưới sự hướng dẫn của thầy Nguyễn Trung Thành và các thầy cô giáo trong khoa đã giúp đỡ chúng em thực hiện ý tưởng này. CHƯƠNG 2 GIỚI THIỆU CÁC LINH KIỆN DÙNG TRONG MẠCH 2.1.Các Triger số. 2.1.1. Định nghĩa và phân loại. Định nghĩa. Triger trong tiếng anh gọi là Flip - Flop viết tắt là FF. Nó là một phần tử nhớ hai trạng thái cân bằng ổn định tương ứng với hai mức logic 0 và 1. Dưới tác dụng của các tín hiệu điều khiển ở lối vào, triger có thể chuyển về một trong hai trạng thái cân bằng, và giữ nguyên trạng thái đó chừng nào chưa có tín hiệu điều khiển làm thay đổi trạng thái của nó. Trạng thái tiếp theo của triger phụ thuộc không những vào tín hiệu lối vào mà còn phụ thuộc vào trạng thái hiện hành của nó. Đang chạy, nếu ngừng các tín hiệu điều khiển ở lối vào vẫn có khả năng giữ trạng thái hiện hành của mình trong thời gian dài, chừng nào mà còn điện nuôi mạch triger không bị ngắt thì thông tin dưới dạng nhị phân lưu giữ trong triger vẫn được duy trì. Như vây, nó được sử dụng như một phần tử nhớ. Triger được cấu thành từ một nhóm các cổng logic, mặc dù các cổng logic tự thân nó không có khả năng lưu trữ, nhưng có thể nối nhiều cổng với nhau theo cách thức cho phép lưu trữ được thông tin. Mỗi sự sắp xếp cổng khác nhau sẽ cho ra các triger khác nhau. Triger có nhiều đầu vào điều khiển và chỉ hai đầu ra luôn luôn ngược nhau là Q và . Sơ đồ khối tổng quát của một triger: Q : Đầu ra thường : Đầu ra đảo. + Khi Q =1, =0 ta nói FF ở trạng thái 1 hay trạng thái cao; trạng thái này còn được gọi là trạng thái Set (Thiết lập). +Khi Q =0, =1 ta nói FF ở trạng thái 0 hay trạng thái thấp; trạng thái nay còn gọi là trạng thái Reset (tái thiết lập) · Các ký hiệu về tính tích cực của tín hiệu: Ký hiệu Tính tích cực của tín hiệu Tích cực là mức thấp “ L” Tích cực là mức cao “H” Tích cực là sườn dương của xung nhịp Tích cực là sườn âm của xung nhịp Phân loại. Có nhiều cách phân loại triger : Phân loại theo chức năng làm việc của các đầu vào điều khiển. Hiện nay thường sử dụng loại triger 1 đầu vào (triger D, triger T) và loại hai đầu vào (triger RS, triger JK ) ngoài ra đôi khi còn gặp loại triger nhiều đầu vào. Phân loại theo cách làm việc ta có loại triger đồng bộ và không đồng bộ. Loại đồng bộ lại được chia ra làm hai loại, đó là loại đồng bộ thường và loại đồng bộ chủ tớ. · Sơ đồ khối cho sự phân loại triger như sau: Flip - Flop Theo chức năng Theo cách làm việc JK-FF Asvnchronous Avnchronous RS-FF T-FF D - FF Master-Slave Normal Biểu diễn FF. Để mô tả một FF người ta có thể dùng: + Bảng chân lý + Đồ hình chuyển đổi trạng thái + Phương trình đặc trưng 2.1.2 Các loại triger và điều kiện đồng bộ Các triger đều có thể xây dựng từ các mạch tổ hợp có hồi tiếp. Ta biết rằng mạch có hồi tiếp chỉ có thể làm việc tin cậy khi điều kiện sau đây được thoả mãn: Mạch không rơi vào trạng thái dao động dưới tác động của bất kỳ tập hợp tín hiệu điều khiển nào. Điều này có nghĩa là, ứng với mỗi tập hợp tín hiệu vào bất kỳ phải tồn tại ít nhất một trạng thái ổn định. Trạng thái ổn định là trạng thái thoả mãn điều kiện Qn+1 =Qn (Qn : trạng thái lối ra ở thời điểm n, Qn+1: Trạng thái lối ra ở thời điểm n+1 ) Theo chức năng có 4 loai FF cơ bản : D, T, RS, JK. Bảng chân lýcủa các FF như sau T Qn Qn=1 0 0 0 1 0 1 1 1 0 1 1 0 J K Qn Qn+1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 R S Qn Qn+1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 x x =>Từ bảng chân lý trên ta rút ra nhận xét : Các D-FF và RS-FF có thể làm việc ở chế độ không đồng bộ vì mỗi tập hợp tín hiệu vào điều khiển D-FF, RS-FF luôn luôn tồn tại ít nhất một trong các trạng thái ổn định. Bởi vì tất cả tín hiệu vào điều khiển D-FF, RS- FF đều có một trạng thái Qn = Qn+1. Các T-FF và JK-FF không thể làm việc ở chế độ không đồng bộ vì mạch rơi vào trạng thái dao động nếu như tập tín hiệu vàoT = 1 hoặc JK =1. Với các tập tín hiệu vào này không bao giờ có trạng thái Qn = Qn+1 Như vậy, các D-FF và RS-FF có thể làm việc ở hai chế độ: đồng bộ và không đồng bộ, còn T-FF và JK-FF chỉ có thể làm việc ở chế độ đồng bộ . ¨ Chế độ không đồng bộ: Trạng thái đầu ra sẽ thay đổi bất kỳ khi nào khi có sự thay đổi đầu vào điều khiển . ¨ Chế độ đồng bộ: Để khống chế sự thay đổi trạng thái đầu ra người ta đưa vào FF 1 đầu vào xung nhịp (Clock). Chỉ khi nào tác động của xung nhịp thì FF mới thay đổi trạng thái theo đầu vào điều khiển. Xung nhịp thường là một chuỗi xung hình chữ nhật hoặc xung vuông. Hầu hết kỹ thuật số là đồng bộ vì mạch đồng bộ dễ thiết kế và dễ dò lỗi hơn là bởi vì đầu ra của mạch chỉ thay đổi ở những thời gian xác định. 2.1.3. Đầu vào bất đồng bộ . Đối với triger đồng bộ có đầu vào điều khiển và đầu xung nhịp. Các đầu vào điều khiển còn được gọi là đầu vào đồng bộ vì tác động của chúng lên đầu ra của triger đồng bộ với đầu vào xung nhịp. Hầu hết các triger đều có một hoặc nhiều đầu vào bất đồng bộ là những đầu vào hoạt động độc lập với đầu vào đồng bộ và đầu vào xung nhịp. Đầu vào bất đồng bộ dùng để thiết lập FF ở trạng thái 1 hoặc xoá triger về trạng thái 0 bất kỳ thời điểm nào, bất chấp điều kiện các đầu vào còn lại. Hai đầu vào bất đồng bộ Preset (thiết lập) và Clear (xoá) là những đầu vào tích cực ở mức thấp, Preset (Pr) thiết lập FF ở trạng thái 1 bất cứ lúc nào và Clear (CLR) xoá FF về trạng thái 0 vào bất cứ lúc nào. Do đó có thể sử dụng các đầu vào bất đồng bộ để giữ FF ở trạng thái cụ thể trong bất kỳ khoảng thời gian dự tính nào. Tuy nhiên, đầu vào bất đồng bộ rất thường được dùng để thiết lập hoặc xoá FF về trạng thái mong muốn bằng cách áp xung nhất thời . 2.1.4. Triger RS. Triger RS là một triger có hai đầu vào điều khiển là R, S. S là đầu vào thiết lập 1(Set) còn R là đầu vào xoá 0 (Reset) Bảng chân lý rút gọn: R S Qn+1 Mốt hoạt động 0 0 1 1 0 1 0 1 Qn 1 0 x Nhớ Thiết lập Xoá Cấm dùng Trên bảng chân lý Qn chỉ trạng thái lối ra ở thời điểm hiện tại, Qn+1 chỉ trạng thái lối ra tại thời điểm tiếp theo . Phương trình đặc trưng : Qn+1 =S + Qn Phương trình trên cho thấy lối ra không những là hàm số của lối vào mà còn phụ thuộc vào trạng thái trước đó của lối ra. Ta có thể xây dựng sơ đồ logic của triger RS từ mạch NOR, lối vào tích cực ở mức cao. Từ bảng chân lý trên ta cũng có thể viết phương trình của triger RS như sau: Qn+1 =S +Qn =(S+Qn ) = Sơ đồ logic và giản đồ xung biểu diễn trạng thái của triger : Ta cũng có thể xây dựng triger RS không đồng bộ với đầu vào tích cực bởi mức logic thấp từ phần tử logic NAND. Sơ đồ logic và giản đồ xung : 2.1.5 Triger RS đồng bộ. Triger RS đồng bộ đầu ra sẽ thay đổi trạng thái bất kỳ thời điểm nào có sự tác động của đầu vào R hoặc S, vì thế trạng thái của triger sẽ không ổn định khi lối vào chịu ảnh hưởng của nhiễu. Để khắc phục nhược điểm trên người ta dùng triger TS đồng bộ nghĩa là thêm vào một đầu xung nhịp Clock(Ck, CLK) điều khiển chung cho cả hai lối vào. Chỉ khi nào có tác động của xung nhịp này thì triger mới chuyển trạng thái theo tác động của R hay S. Ký hiệu của triger RS đồng bộ cho trên hình : Sự chuyển trạng thái của triger RS và tất cả các loại triger đồng bộ khác xảy ra có thể vào thời điểm sau khi xung nhịp đã chuyển từ mức logic 0 lên mức logic 1 (Sườn dương) hoặc ngược lại (Sườn âm). 2.2. IC74LS90 IC 7490 là IC đếm bất đồng bộ cơ bản và thông dụng . Để được tiện lợi , mỗi mạch đếm được chia làm 2 phần : phần đầu là một FF với ngõ xung vào là A để chia đôi tần số ( mạch đếm 1 bit) , tần tiếp theo là 3 bộ FF với ngõ xung vào là B để thực hiện việc chia 5 tần số . Muốn thực hiện mạch đếm đầy đủ ta áp can đếm ở ngõ ra và nối (ngoài IC) ngõ ra QA đến ngõ vào B , lúc này số đếm nhị phân là QDQCQBQA(0001). Xung vào phải tương thích TTL và có độ rộng xung ít nhất là vài nano giây. Mỗi mạch đếm có 2 ngõ Reset (đặt lại) gọi R01 và R02 . Vì 2 ngõ này đựơc nối AND với nhau nên để xoá mạch đếm (QA = QB =QC =QD =0) cả 2 ngõ Reset được đưa lên cao và để mạch đếm có thể đếm lên phải đưa ít nhất 1 ngõ Reset xuống thấp . Thường 2 ngõ này được nối chung với nhau và giữ ở mức thấp , khi muốn xoá mạch ta phải đưa 2 ngõ này lên cao trong chốc lát (ít nhất là vài chục nano=giây) rồi đưa xuống thấp để cho phép mạch đếm lên. 2 ngõ này là 2 ngõ bất đồng bộ vì tác động độc lập với đồng hồ (xung vào). Hai thông số quan trọng để thiết kế mạch đếm này là: Bảng chân lý mã hóa ra BCD và điều kiện để Reset (Trở về trạng thái ban đầu). Cấu tạo bên trong. Hình 2.1: Cấu tạo bên trong IC 74LS90 b. Sơ đồ chân. Hình 2.2: Sơ đồ chân IC 74LS90 * IC 7490 là IC 14 chân,trongđó : Chân 14 nhận xung vào. Chân 12,11,9,8 dữ liệu ngõ ra. Chân 10 nối GND. Chân 5 nối VCC. Chân 13,4 không được sử dụng. Chân 2,3,6,7 RESET. Chân 1 nhận xung clock báo tràn,led hiển thị từ số 9 về số 0 . Bảng chân lý mã hóa ra BCD c. Mức Reset cho LS7490. Nó có 4 chân Reset dùng để reset hệ thống với các chân : MR1, MR2, MS1, MS2. Đưa các mức thích hợp vào các chân này thì nó sẽ tự động Reset. Sau đây là bảng mức Reset: 2.3. IC74LS247. IC 74247 là IC giải mã led 7 đoạn.IC này thuộc họ TTL.Nó nhận tính hiệu BCD từ ngõ vào QA,QB,QC,QD của IC7490 để giải mã ra led 7 đoạn.IC này có chân 3(LT) dùng để kiển tra led tức là chân này nối với mức 0V thì các ngõ ra đều là mức cao hay led 7 đoạn hiển thị số 5(RBI) là chân cho phép hoạt động.chân BI dùng để ngắt chế độ hoạt động Vì các chân ngõ ra của IC 74247 là mức thấp cho nên ta phải sử dụng led loại Anot chung. Sơ đồ chân. Hình 2.3: Sơ đồ chân - Chân 1,2,6,7 tín hiệu ngõ vào. - Chân 3 hiển thị số 0. - Chân 4 kiểm tra led 7 đoạn. - Chân 5 chot trạng thái trước đó. - Chân 8 nối nguồn GND. - Chân 9,10,11,12,13,14,15 là mức logic ngõ ra. Chân 16 nối nguồn dương VCC b. Bảng chân lý * Trong đó : + H : High voltage levele : đặt điện áp cao. + L : Low voltage levele : đặt điện áp thấp. + X : Immaterial : không xác định. b. Cấu tạo trong . 2.4 IC LM324N LM324 là bộ gồm 4 mạch khuếch đại thuật toán (operational amplifier, op amp, opamp) độc lập giống hệt nhau được đặt trong cùng một vỏ bọc và có khả năng chạy nguồn đôi,( nguồn dương và nguồn âm)cũng như nguồn đơn( Vcc và GND). Đặc điểm nữa là nguồn nuôi của LM324 có thể hoạt động độc lập với nguồn tín hiệu: + Điện áp cung cấp: Nguồn cung cấp cho LM324 tầm từ 5V~32V. Tuy nhiên ta chỉ nên dùng điện áp từ 5V~12V + Điện áp tối đa ngõ vào: áp ngõ vào từ 0~32V đối với nguồn đơn và cộng trừ 15V đối với nguồn đôi + Điện áp ngõ ra từ 0~Vcc-1,5V + Dòng ngõ ra Dòng ngõ ra khi mắc theo kiểu đẩy dòng (dòng Sink) thì dòng đẩy tối đa đạt được 20mA. Dòng ngõ ra khi mắc theo kiểu hút dòng (dòng Souce) thì dòng hút tối đa có thể lên đến 40mA + Tần số hoạt động của LM324 là 1MHz và độ lợi khuếch đại điện áp DC của LM324 tối đa khoảng 100 dB Sơ đồ chân: 2.5 IC logic 74ls14 IC 74ls14 Cổng NOT với 6 ngõ vào Bảng chức năng và sơ đồ chân: Tín hiệu vào có thể bị nhiễu và chưa “vuông” nên có thể gây ra việc đọc sai số xung ở vi điều khiển. Chính vì vậy qua mạch đảo tín hiệu xung này tín hiệu sẽ “vuông ” hơn tạo điều kiện thuận lợi cho vi điều khiển xử lý. 2.6. Led 7 thanh a.Sơ đồ chân : Hình 2.4: Sơ đồ chân Led 7 thanh Trong đồ án này chúng em sử dụng led 7 thanh anode chung. 2.7. Led thu phát hồng ngoại. Đây là loại cảm biến sử dụng ánh sáng hồng ngoại là ánh sáng không nhìn thấy.Nguồn sáng được tạo ra từ các LED phát ra ánh sáng hồng ngoại và nó được gọi là bộ phát.Bộ thu có thể là photodiode hoặc phtotransistor. Cảm biến quang có 1 dạng hoạt động chính đó là: + Tối hoạt động: là 1 dạng hoạt động của cảm biến .mà tải được cấp điện khi ánh sáng từ bộ phát không đến được bộ thu của cảm biến. + Sáng hoạt động : là 1 dạng hoạt động của cảm biến .mà tải được cấp điện khi ánh sáng từ bộ phát được truyền đến bộ thu của cảm biến. 2.8. IC7805 IC 7805 giúp giảm điện áp từ 6v-12v xuống còn 5v -Chân 1 là chân dương vào. -Chân 2 là chân trung hoà. -Chân 3 là chân dương -Dòng cực đại có thể duy trì 1A. -Dòng đỉnh 2,2A. 2.9. Biến trở. Ký hiệu trên sơ đồ nguyên lý : Biến trở:                                                                              .     Điện trở xi măng :Vật liệu chủ yếu là xi măng.Chúng được sử dụng chính trong các mạch cung cấp nguồn điện do công suất cho phép cao không bốc cháy trong trường hợp quá tải.     Điện trở oxit kim loại :Cấu tạo từ vật liệu oxit thiếc,loại này chịu được nhiệt độ cao và độ ẩm cao,thường có công suất 1/2 W. * Phân loại theo công dụng.    Biến trở :là loại điện trở có thể thay đổi trị số theo yêu cầu,thương gọi là chiết áp.Có 2 loại biến trở :Biến trở dây quấn và biến trở than. Công dụng :Biến trở có vai trò phân áp, phân dòng cho mạch hay để thay đổi âm lượng, tốc độ đếm sản phẩm trong mạch.              2.10. Điện trở. *Cách xác định trị số điện trở. Các điện trở khác nhau ở vòng mầu thứ 3 Khi các điện trở khác nhau ở vòng mầu thứ 3, thì ta thấy vòng mầu bội số này thường thay đổi từ mầu nhũ bạc cho đến mầu xanh lá , tương đương với điện trở < 1 Ω đến hàng MΩ. Các điện trở có vòng mầu số 1 và số 2 thay đổi . Ở hình trên là các giá trị điện trở ta thường gặp trong thực tế, khi vòng mầu số 3 thay đổi thì các giá trị điện trở trên tăng giảm 10 lần. Còn vòng mầu thứ 4 thường là vòng mầu chỉ sai số của điện trở. Các trị số điện trở thông dụng.Ta không thể kiếm được một điện trở có trị số bất kỳ, các nhà sản xuất chỉ đưa ra khoảng 150 loại trị số điện trở thông dụng , bảng dưới đây là mầu sắc và trị số của các điện trở thông dụng. Nên việc nhìn các màu điện trở ta có thể xác định điện trở đó bao nhiêu ôm. -Phân loại: +Điện trở thường : Điện trở thường là các điện trở có công xuất nhỏ từ 0,125W đến 0,5W +Điện trở công xuất : Là các điện trở có công xuất lớn hơn từ 1W, 2W, 5W, 10W. +Điện trở sứ, điện trở nhiệt : Là cách gọi khác của các điện trở công xuất , điện trở này có vỏ bọc sứ, khi hoạt động chúng toả nhiệt. -Công suất của trở: +Khi mắc điện trở vào một đoạn mạch, bản thân điện trở tiêu thụ một công xuất P tính được theo công thức : P = U . I = U2 / R = I2.R Theo công thức trên ta thấy, công xuất tiêu thụ của điện trở phụ thuộc vào dòng điện đi qua điện trở hoặc phụ thuộc vào điện áp trên hai đầu điện trở. +Công xuất tiêu thụ của điện trở là hoàn
Luận văn liên quan