Đề tài Thiết kế bộ nghịch lưu áp một pha

Ngày nay với sự phát triển nhanh chóng của kĩ thuật bán dẫn công suất lớn, các thiết bị biến đổi điện năng dùng các phần tử bán dẫn công suất được sử dụng ngày càng nhiều trong công nghiệp và đời sống, đáp ứng được nhu cầu cao của xã hội.Trong thực tế sử dụng điện năng ta cần thay đổi tần số của nguồn cung cấp,các bộ biến tần đáp ứng rất tốt về vấn đề này, và được sử dụng trong các hệ truyền động điện Bộ nghịch lưu là bộ biến tần gián tiếp biến đổi từ điện một chiều sang xoay chiều nó được ứng rất nhiều trong các hệ truyền động điện. Trong thời gian học tập và nghiên cứu chúng em được học môn điện tử công suất và ứng dụng trong sản xuất và đời sống. Vì vậy để nắm vững lý thuyết và vẫn dụng kiến thức đã học vào thực tế chúng em đã nhận đồ án môn học với đề tài “thiết kế bộ nghịch lưu áp một pha” Trong thời gian thực hiện đồ án chúng em xin chân thành cảm ơn tới các thầy cô trong bộ môn Thiết Bị Điện - Điện Tử đặc biệt là thầy Nguyễn Thành Khang đã tận tình hướng dẫn và chỉ bảo chúng em.Tuy nhiên do thời gian và kiến thức có hạn nên sẽ không tránh khỏi những thiếu sót khi thực hiện đồ án này

pdf36 trang | Chia sẻ: lvbuiluyen | Lượt xem: 11792 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Đề tài Thiết kế bộ nghịch lưu áp một pha, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
i NHẬN XÉT CỦA GIÁO VIÊN HƯỚNG DẪN _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hà Nội, ngày 28 tháng 12 năm 2012 Giáo viên hướng dẫn ii LỜI NÓI ĐẦU Ngày nay với sự phát triển nhanh chóng của kĩ thuật bán dẫn công suất lớn, các thiết bị biến đổi điện năng dùng các phần tử bán dẫn công suất được sử dụng ngày càng nhiều trong công nghiệp và đời sống, đáp ứng được nhu cầu cao của xã hội.Trong thực tế sử dụng điện năng ta cần thay đổi tần số của nguồn cung cấp,các bộ biến tần đáp ứng rất tốt về vấn đề này, và được sử dụng trong các hệ truyền động điện…Bộ nghịch lưu là bộ biến tần gián tiếp biến đổi từ điện một chiều sang xoay chiều nó được ứng rất nhiều trong các hệ truyền động điện. Trong thời gian học tập và nghiên cứu chúng em được học môn điện tử công suất và ứng dụng trong sản xuất và đời sống. Vì vậy để nắm vững lý thuyết và vẫn dụng kiến thức đã học vào thực tế chúng em đã nhận đồ án môn học với đề tài “thiết kế bộ nghịch lưu áp một pha” Trong thời gian thực hiện đồ án chúng em xin chân thành cảm ơn tới các thầy cô trong bộ môn Thiết Bị Điện - Điện Tử đặc biệt là thầy Nguyễn Thành Khang đã tận tình hướng dẫn và chỉ bảo chúng em.Tuy nhiên do thời gian và kiến thức có hạn nên sẽ không tránh khỏi những thiếu sót khi thực hiện đồ án này.Vì vậy chúng em rất mong nhận được sự đóng góp của thầy cô để đề tài được hoàn thiện hơn. Chúng em xin chân thành cảm ơn! iii MỤC LỤC CHƯƠNG 1: CƠ SỞ LÝ THUYẾT...................................................................... 1 1.1 Nghịch lưu ..................................................................................................... 1 1.1.1 Nghịch lưu phụ thuộc .............................................................................. 1 1.1.2 Nghịch lưu độc lập .................................................................................. 1 1.1.3 Nghịch lưu độc lập điện áp ...................................................................... 1 1.2 Cải thiện điện áp ra cho nghịch lưu độc lập điện áp ....................................... 3 1.3 Điều chế PWM cho nghịch lưu độc lập điện áp một pha ................................ 4 1.3.1 PWM (Pulse Width Modulation) ............................................................. 4 1.3.2 Phương pháp SINPWM ........................................................................... 5 CHƯƠNG II: MẠCH ĐIỀU KHIỂN ................................................................... 8 2.1 Giới thiệu về dsPIC33FJ12MC202 ................................................................ 8 2.2 Cấu hình dao động dùng PLL cho dsPIC33F ............................................... 10 2.2.1. Bộ dao động ......................................................................................... 10 2.2.2. Cấu hình: .............................................................................................. 10 2.3 Module PWM .............................................................................................. 13 2.3.1 Các chế độ vận hành .............................................................................. 13 2.3.2 PWM Period .......................................................................................... 13 2.3.3 PWM duty cycle .................................................................................... 14 2.3.4 Bộ tạo thời gian dead time ..................................................................... 15 2.3.5 Các chế độ PWM Output ....................................................................... 15 2.4 Code ............................................................................................................ 16 CHƯƠNG III: MẠCH LÁI ................................................................................ 18 3.1 Sơ đồ mạch lái ............................................................................................. 18 3.2 Nguyên lý bootstrap ..................................................................................... 19 CHƯƠNG IV: MẠCH ĐỘNG LỰC................................................................... 20 CHƯƠNG V: BỘ LỌC ĐẦU RA ....................................................................... 23 5.1.Tổng quát về các bộ lọc ............................................................................... 23 5.2 Lựa chọn phương án lọc .............................................................................. 24 5.3 Tính toán bộ lọc LC: .................................................................................... 25 CHƯƠNG VI: SƠ ĐỒ ......................................................................................... 26 6.1 Sơ đồ khối: .................................................................................................. 26 iv 6.2 Sơ đồ mạch tạo nguồn .................................................................................. 26 6.3 Sơ đồ khối điều khiển .................................................................................. 26 6.4.Sơ đồ mạch lái mosfet .................................................................................. 27 6.5 Sơ đồ mạch động lực ................................................................................... 27 CHƯƠNG VII: KẾT QUẢ.................................................................................. 28 7.1 Mạch mô phỏng sử dụng Proteus : ............................................................... 28 7.2 Tín hiệu điều khiển đo được......................................................................... 29 7.3 Mạch thật .................................................................................................... 30 Tài liệu tham khảo ............................................................................................... 31 Website tham khảo: ............................................................................................. 31 DANH SÁCH HÌNH VẼ Hình 1.1: Các sơ đồ nghịch lưu độc lập điện áp một pha ......................................... 2 Hình 1.2: Sơ đồ nghịch lưu áp một pha .................................................................... 2 Hình 1.3: Các sóng hài bậc cao ................................................................................ 3 Hình 1.4: Phương pháp PWM .................................................................................. 4 Hình 1.5: Điện áp ra bộ nghịch lưu PWM đơn cực .................................................. 5 Hình 1.6: Đồ thị xác định thời điểm kích mở van công suất ..................................... 6 Hình 1.7: Điều chế độ rộng xung lưỡng cực ............................................................ 7 Hình 2.1: Các họ vi điều khiển PIC và dsPIC .......................................................... 8 Hình 2.2: Sơ đồ khối của dsPIC33FJ12MC202........................................................ 9 Hình 2.3: Sơ đồ chân của dsPIC33FJ12MC202 ..................................................... 10 Hình 2.4: Cấu hình PLL cho dsPIC dòng MC ........................................................ 11 Hình 2.5: Chế độ Continous Up/Down Counting ................................................... 13 Hình 2.6: Thay đổi giá trị PTPER .......................................................................... 14 Hình 2.7: Thay đổi giá trị duty cycle ..................................................................... 14 Hình 2.8: Sơ đồ khối chế độ hoạt động hỗ trợ ........................................................ 15 Hình 2.9 : Ví dụ đầu ra PWM chế độ hoạt động hỗ trợ .......................................... 15 Hình 3.1: Khóa MOSFET tầng trên ....................................................................... 18 Hình 3.2: IR2110 ................................................................................................... 19 Hình 3.3: Sơ đồ mạch nguyên lý bootstrap ............................................................ 19 v Hình 3.4: Sơ đồ lắp mạch IR2110 .......................................................................... 19 Hình 4.1: BJT, MOSFET và IGBT ........................................................................ 20 Hình 4.2: IRFP460 ................................................................................................ 22 Hình 5.1: Lọc 2 mắt cộng hưởng ........................................................................... 24 Hình 5.2: bộ lọc một mắt cộng hưởng nối tiếp ....................................................... 24 Hình 5.3:Bộ lọc LC đơn giản ................................................................................. 24 Hình 5.4: Bộ lọc LC .............................................................................................. 25 Hình 5.5: Cuộn cảm lọc ......................................................................................... 25 Hình 6.1: Sơ đồ khối.............................................................................................. 26 Hình 6.2: Mạch tạo nguồn ..................................................................................... 26 Hình 6.3: Mạch điều khiển .................................................................................... 26 Hình 6.4: Mạch lái mosfet ..................................................................................... 27 Hình 6.5: Mạch động lực ....................................................................................... 27 Hình 7.1: Sơ đồ mô phỏng trong proteus ............................................................... 28 Hình 7.2: Kết quả mô phỏng trong proteus ............................................................ 28 Hình 7.3: Tín hiệu điều khiển ................................................................................ 29 Hình 7.4: Mạch thật ............................................................................................... 30 1 CHƯƠNG 1: CƠ SỞ LÝ THUYẾT 1.1 Nghịch lưu Nghịch lưu là thiết bị để biến đổi năng lượng dòng điện một chiều thành năng lượng dòng xoay chiều với tần số cố định hoặc thay đổi. 1.1.1 Nghịch lưu phụ thuộc Nghịch lưu phụ thuộc có tần số điện áp của dòng điện xoay chiều chính là tần số không thể thay đổi của lưới điện. Sự hoạt động của nghịch lưu này phải phụ thuộc vào điện áp lưới vì tham số điều chỉnh duy nhất là góc điều khiển α được xác định theo tần số và pha của lưới xoay chiều. 1.1.2 Nghịch lưu độc lập Nghịch lưu độc lập hoạt động với tần số ra do mạch điều khiển quyết định và có thể thay đổi tùy ý, tức là độc lập với lưới điện. Nghịch lưu độc lập được chia làm 3 loại:  Nghịch lưu độc lập điện áp, cho phép biến đổi từ điện áp một chiều E thành nguồn điện áp xoay chiều có tính chất như điện áp lưới: trạng thái không tải là cho phép còn trạng thái ngắn mạch tải là sự cố. Van bán dẫn trong nghịch lưu độc lập điện áp hoạt động dưới tác động của sức điện động một chiều E, vì vậy thích hợp là van điều khiển hoàn toàn: các loại transistor BJT, MOSFET, IGBT hay GTO  Nghịch lưu độc lập dòng điện: cho phép biến nguồn dòng một chiều thành nguồn xoay chiều.  Nghịch lưu độc lập cộng hưởng: có đặc điểm khi hoạt động luôn hình thành một mạch vòng dao động cộng hưởng RLC. Với nghịch lưu độc lập dòng điện và nghịch lưu độc lập cộng hưởng, do tính chất mạch cho phép ứng dụng tốt van bán điều khiển thyristor nên chúng thường được dùng. Trong phạm vi đồ án ta chỉ xét nghịch lưu độc lập điện áp. 1.1.3 Nghịch lưu độc lập điện áp a. Đặc điểm cấu tạo Do nguồn đầu vào của mạch nghịch lưu là nguồn áp nên mạch nghịch lưu áp có tụ C (C→ ∞) được mắc song song với điện trở nguồn. Trong hình 1.1 là một số sơ đồ nghịch lưu áp một pha trong đó sơ đồ cầu hình 1.1a, bán cầu hình 1.1b và sơ đồ hình tia 1.1c tuy nhiên dạng điện áp ra và các tham số của chúng giống như nhau, vì vậy chúng ta chỉ xét trên cơ sở sơ đồ cầu hình 1.1a. Sơ đồ nghịch lưu áp một pha được mô tả trên hình 1.1a gồm 4 van động lực T1, T2, T3, T4 và điôt D1, D2, D3, D4 để trả công suất phản kháng của tải về lưới. 2 1.1a 1.1b 1.1c Hình 1.1: Các sơ đồ nghịch lưu độc lập điện áp một pha b. Nguyên lý làm việc Ở nửa chu kỳ đầu tiên, cặp van T1, T2 dẫn điện, phụ tải được đấu với nguồn. Do nguồn là nguồn áp nên điện áp trên tải bằng E, sau một khoản thời gian T1, T2 bị khóa đồng thời T3, T4 mở ra. Tải sẽ được đấu vào nguồn một chiều theo chiều ngược lại. Sau một khoảng thời gian t quá trình được lập lại. Điện áp nghịch lưu có dạng xung vuông, có tần số fN tạo ra nhờ đóng mở các cặp van T1, T2 và T3, T4 một cách có chu kỳ: fN=fđk Do đó khi thay đổi tần số điều khiển fđk có thể thay đổi tần số nghịch lưu fN tuỳ ý. Hình 1.2: Sơ đồ nghịch lưu áp một pha 3 c. Ưu nhược điểm  Ưu điểm: o Điều chỉnh được tần số fN o Điện áp ra của nghịch lưu có thể dùng các phương pháp khác nhau để giảm sóng hài bậc cao o Các van được sử dụng là các van điều khiển hoàn toàn do đó dễ dàng điều khiển đóng cắt các van o Công suất bộ biến đổi phụ thuộc vào công suất của van,mà công suất của van động lực ngày càng lớn với kích thước ngày càng nhỏ gọn  Nhược điểm: o Số lượng van sử dụng khá nhiều o Điện áp ra có sóng hài bậc cao ảnh hưởng tới thiết bị điện Hình 1.3: Các sóng hài bậc cao 1.2 Cải thiện điện áp ra cho nghịch lưu độc lập điện áp Nếu tải không có đòi hỏi về dạng áp ra hình sin sẽ không cần quan tâm đến bộ lọc. Tuy nhiên với các tải xoay chiều được thiết kế chế tạo để làm việc với nguồn điện áp hình sin (như động cơ điện, máy biến áp lực) cần phải cải thiện dạng điện áp ra theo yêu cầu của tải. Có một số phương pháp sau được sử dụng: Dùng bộ lọc tần số thụ động: với dòng tải lớn và điện áp cao bộ lọc phải thực hiện bằng các phần tử thụ động L và C, điều này dẫn đến tổn thất công suất không thể tránh khỏi làm giảm hiệu suất hệ thống, mặt khác làm tăng đáng kể kích thước thiết bị. Hơn nữa hiệu quả lọc tần của bộ lọc thụ động không cao. 4 Phương pháp cộng điện áp nhiều nghịch lưu độc lập với góc pha lệch nhau hoặc tần số khác nhau: phương pháp này thực hiện khá đơn giản, các van hoạt động nhẹ nhàng vì tần số chuyển mạch thấp, nhưng mạch lực và mạch điều khiển phức tạp, vì vậy cũng ít được dùng. Phương pháp điều chế PWM: trong một khoảng dẫn của van, transistor không dẫn liên tục mà đóng cắt rất nhiều lần với độ rộng xung dẫn thay đổi.  Điều chế hình sin (SPWM)  Điều chế vector (VPWM) Phương pháp băm xung chọn lọc trong khoảng van dẫn: các van không đóng mở nhiều lần như trong phương pháp điều chế PWM mà thường chỉ dưới 10 lần. Phương pháp này sẽ phù hợp khi sử dụng các van không có khả năng làm việc ở tần số cao như GTO, IGBT hay thyristor (có kèm chuyển mạch cưỡng bức). Ta sử dụng phương pháp điều chế SINPWM kết hợp với bộ lọc LC. 1.3 Điều chế PWM cho nghịch lưu độc lập điện áp một pha 1.3.1 PWM (Pulse Width Modulation) PWM là phương pháp điều chỉnh điện áp ra tải hay nói cách khác là phương pháp điều chế dựa trên sự thay đổi độ rộng của chuỗi xung vuông dẫn đến sự thay đổi điện áp ra. Các PWM khi biến đổi thì có cùng 1 tần số và khác nhau về độ rộng của sườn dương hay hoặc là sườn âm Hình 1.4: Phương pháp PWM Gọi t1 là thời gian xung ở sườn dương (khóa mở ) còn T là thời gian của cả sườn âm và dương, Umax là điện áp nguồn cung cấp cho tải. 5 ==> Ud = Umax.( t1/T) (V) hay Ud = Umax.D Với D = t1/T là hệ số điều chỉnh và được tính bằng % Như vậy ta nhìn trên hình đồ thị dạng điều chế xung thì ta có : Điện áp trung bình trên tải sẽ là :  Ud = 12.30% = 3,6V ( với D = 30%)  Ud = 12.60% = 7,2V (Vói D = 60%)  Ud = 12.90% = 10.8V (Với D = 90%) 1.3.2 Phương pháp SINPWM a. Phương pháp điều khiển PWM đơn cực: Hai đại lượng cần phải quan tâm khi xem xét về PWM là: sóng mang và song điều biến:  Sóng mang: Sóng mang là sóng tam giác có tần số rất lớn, có thể đến hàng chục thậm chí hàng trăm kHz.  Sóng điều biến: Sóng điều biến là sóng hình sin có tần số bằng tần số sóng cơ bản đầu ra của bộ nghịch lưu. Sóng điều biến chính là sóng mong muốn ở đầu ra của mạch nghịch lưu. Hình 1.5: Điện áp ra bộ nghịch lưu PWM đơn cực Nhận thấy rằng diện tích của mỗi xung tương ứng gần với diện tích dưới dạng sóng hình sin mong muốn giữa hai khoảng mở liên tiếp. Các điều hòa của sóng điều chế theo phương pháp PWM giảm rõ rệt theo phương pháp này. Để xác định thời điểm kích mở cần thiết để tổng hợp đúng dạng sóng đầu ra theo phương pháp PWM (đơn cực) trong mạch điều khiển người ta tạo ra một sóng sin chuẩn mong muốn và so sánh nó với một dãy xung tam giác được biểu diễn trên hình 1.6.Giao điểm của hai sóng xác định thời điểm kích mở van bán dẫn. 6 Hình 1.6: Đồ thị xác định thời điểm kích mở van công suất Điện áp đầu ra bộ nghịch lưu dùng phương pháp PWM cực đại khi ở chế độ xung vuông,có nghĩa là khi đó đầu ra của PWM giống như bộ nghịch lưu nguồn áp.Khi điện áp điều khiển càng giảm thì bề rộng của xung càng giảm và độ trống xung càng tăng, do vậy điện áp ra giảm.Vì vậy có thể điều khiển điện áp đầu ra bằng điện áp điều khiển. Quá trình đưa xung có tần số cao vào sẽ tạo ra đóng cắt tần số lớn do vậy sẽ làm tăng các điều hòa bậc cao. Nhưng có thể dễ dàng lọc ra điều hòa bậc thấp và tần số cơ bản sin hơn. Bên cạnh đó động cơ là tải điện cảm nên dễ dàng làm suy giảm các điều hòa bậc cao cả điện áp và dòng điện. b. Phương pháp điều khiển PWM lưỡng cực Thay cho phương pháp điều khiển PWM đơn cực để nâng cao chất lượng điều khiển ta có phương pháp điều khiển PWM lưỡng cực.Các MOSFET được kích mở theo từng cặp nhằm tránh khoảng điện áp về không (lưỡng cực). Giản đồ điện áp điều bi