Một bộ khuếch đại điện áp ( dung Tranzito hay vi mạch ) khi thực hiện một vong hồi tiếp dương có khả năng tự kích và tạo ra dao động điện ( tuần hoàn hoặc không tuần hoàn). Điều kiện tự kích của hệ kín là phải đạt được trạng thái cân bằng pha và cân bằng về biên độ có nghĩa là jA + jB = 0 A.B =1
Điều kiện tự kích chỉ thỏa mãn được với điện áp có một tần số xác định, do đó chỉ mộ tần số được tạo ra với các giá trị xác định của các tham số mạch hồi tiếp. Sơ đồ tạo dao động hình sin dung các khâu RC làm mạch hồi tiếp có tính chất chọn lọc tần số với phẩm chất thấp: Tần số dao động được tạo ra do thông số RC và dạng mạch RC sử dụng quyết định – Người ta có thể tạo ra dao động trong một dải hoặc nhiều dải bằng cách thay đổi giá trị R và C liên tục hay rời rạc.
Điều kiện cân bằng pha được thỏa mãn nhờ cách ghép mạch hồi tiếp và bộ khuếch đại tùy theo tính chất dịch pha của chúng. Điều kiện biên độ được thỏa mãn nhờ chọn hế số khuếch đại (A) phù hợp với hệ số hồi tiếp (β).
Để tạo ra các dao động không tuần hoàn ( tạo xung) thường dung các mạch đa hai tự dao động, đa hai đợi, đa hai đồng bộ, các mạch tích ohaan ( tạo xung tam giác), cách mạch Trigo Smit hoặc kết hợp các mạch với nhau để có dạng xung theo yêu cầu.
44 trang |
Chia sẻ: ngtr9097 | Lượt xem: 5911 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Thiết kế mạch trương tự tạo đồng thời xung vuông và tam giác, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
THIẾT KẾ MẠCH ĐIỆN TỬ TƯƠNG TỰ
Đề số : 13
Lớp : K11B
Nhiệm vụ thiết kế.
Thiết kế bộ tạo đồng thời hai xung: xuông vung và xung tam giác. Xung tam giác có trị đỉnh 6,5v và tần số xung thay đổi được trong phạm vi 500Hz < f < 1 kHz. Điện áp nguồn cung cấp E = ± 15v
Tóm tắt lý thuyết
Một bộ khuếch đại điện áp ( dung Tranzito hay vi mạch ) khi thực hiện một vong hồi tiếp dương có khả năng tự kích và tạo ra dao động điện ( tuần hoàn hoặc không tuần hoàn). Điều kiện tự kích của hệ kín là phải đạt được trạng thái cân bằng pha và cân bằng về biên độ có nghĩa là jA + jB = 0 A.B =1
Điều kiện tự kích chỉ thỏa mãn được với điện áp có một tần số xác định, do đó chỉ mộ tần số được tạo ra với các giá trị xác định của các tham số mạch hồi tiếp. Sơ đồ tạo dao động hình sin dung các khâu RC làm mạch hồi tiếp có tính chất chọn lọc tần số với phẩm chất thấp: Tần số dao động được tạo ra do thông số RC và dạng mạch RC sử dụng quyết định – Người ta có thể tạo ra dao động trong một dải hoặc nhiều dải bằng cách thay đổi giá trị R và C liên tục hay rời rạc.
Điều kiện cân bằng pha được thỏa mãn nhờ cách ghép mạch hồi tiếp và bộ khuếch đại tùy theo tính chất dịch pha của chúng. Điều kiện biên độ được thỏa mãn nhờ chọn hế số khuếch đại (A) phù hợp với hệ số hồi tiếp (β).
Để tạo ra các dao động không tuần hoàn ( tạo xung) thường dung các mạch đa hai tự dao động, đa hai đợi, đa hai đồng bộ, các mạch tích ohaan ( tạo xung tam giác), cách mạch Trigo Smit hoặc kết hợp các mạch với nhau để có dạng xung theo yêu cầu.
Trình tự thiết kế
Xây dựng nguyên tắc thiết kế, từ đó lập sơ đồ khối.
Nêu chắc năng từng khối. Các mạch điện tử thực hiện chức năng đó ( nêu lý thuyết cơ sở: nguyên lý hoạt động, các dạng tín hiệu vào ra, ưu nhược điểm).
Xây dựng sơ đồ nguyên lý toàn mạch.
Tính toán sơ đồ nguyên lý: tính các dòng điện, điện áp, giá trị cạnh linh kiện. Chọn các linh kiện phù hợp với các chức năng của mạch.
Đánh giá ưu nhược điểm của mạch đã thiết kế.
Báo cáo kết quả thiết kế.
Tài liệu tham khảo
(1): Kĩ thuật mạch điện tử. Phạm Minh Hà. Nhà xuất bản Khoa học Kĩ thuật 1997.
(2): Kĩ thuật mạch bán dẫn. Tổng cục Bưu điện. Nhà xuất bản trung tâm thông tin 1988.
(3): Bộ khuếch đại xử lý và IC tuyến tính: William D: Standly. Nhà xuất bản Khoa học Kỹ thuật 1999.
(4). Sổ tay tra cứu vi mạch và Tranzito: Nhà xuất bản Khoa học kĩ thuật 1998.
(5): Sổ tay linh kiện điện tử cho người thiết kế mạch. Nhà xuất bản thồng kê 1996.
Chú ý: Nộp lại đề cùng với bài làm.
Họ và tên sinh viện nhận thiết kế.
PHẦN LÝ THUYẾT
1. TÍN HIỆU XUNG VÀ THAM SỐ
1.1. Định nghĩa
Các tín hiệu điện áp hay dòng điện biến đổi theo thời gian được chia thành 2 loại cơ bản là tín hiệu liên tục và tín hiệu rời rạc (gián đoạn).
Tín hiệu liên tục còn gọi là tín hiệu tuyến tính hay tương tự. Tín hiệu rời rạc gọi là tín hiệu xung hay số
Tiêu biểu cho tín hiệu liên tục là tín hiệu sin, như hình vẽ, với tín hiệu sin ta có thể tính được biên độ của tín hiệu tại từng thời điểm khác nhau.
Tín hiệu hình sin
Ngược lại tiêu biểu cho tín hiệu rời rạc là tín hiệu vuông, dạng tín hiệu như hình 2, biên độ của tín hiệu chỉ có 2 giá trị mức cao VH và mức thấp VL, thời gian chuyển mức tín hiệu từ mức cao sang mức thấp và ngược là rất ngắn coi như bằng 0
a, xung vuông điện áp > 0. b, xung vuông điện áp đều nhau
Tín hiệu xung không chỉ có tín hiệu xung vuông mà còn có mốt số dạng tín hiệu khác như xung tam giác, răng cưa, xung nhọn, xung nấc thang có chu kỳ tuần hoàn theo thời gian với chu kỳ lặp lại T.
Các dạng tín hiệu xung:
Trong nhiều trường hợp xung tam giác có thể coi là xung răng cưa
Các dạng xung cơ bản trên rất khác nhau về dạng sóng, nhưng có điểm chung là thời gian tồn tại xung rất nhắt, sự biến thiên biên độ từ tấp lên cao (xung nhọn) và từ cao xuống thấp (nấc thang, tam giác) xảy ra rất nhanh
Định nghĩa: Tín hiệu xung điện áp hay xung dòng điên là những tín hiệu có thời gian tồn tại rất ngắn, có thể so sánh với quá trình quá độ trong mạch điện mà chúng tác dụng.
1.2. Các tham số cơ bản của xung vuông
Tín hiệu xung vuông như hình 1 là một tín hiệu xung vuông lý tưởng, thực tế khó có 1 xung vuông nào có biên độ tăng và giảm thẳng đứng như vậy:
Dạng xung
Xung vuông thực tế với các đoạn đặc trưng như: sườn trước, đỉnh, sườn sau. Các tham số cơ bản là biên độ Um, độ rộng xung tx, độ rộng sườn trước ttr và sau ts, độ sụt đỉnh
Biên độ xung Um xác định bằng giá trị lớn nhất của điện áp tín hiệu xung có được trong thời gian tồn tại của nó.
Độ rộng sườn trước ttr, sườn sau ts là xác định bởi khoảng thời gian tăng và thời gian giảm của biên độ xung trong khoảng giá trị 0.1Um đến 0.9Um .
Độ rộng xung Tx xác định bằng khoảng thời gian có xung với biên độ trên mức 0.1Um (hoặc 0.5Um).
Độ sụt đỉnh xung thể hiện mức giảm biên độ xung tương tứng từ 0.9Um đến Um.
Với dãy xung tuần hoàn ta có các tham số đặc trưng như sau:
Chu kỳ lặp lại xung T là khoảng thời gian giữa các điểm tương ứng của 2 xung kế tiếp, hay là thời gian tương ứng với mức điện áp cao tx và mức điện áp thấp tng
T = tx + tng (1)
Tần số xung là số lần xung xuất hiện trong một đơn vị thời gian.
(2)
Thời gian nghỉ tng là khoảng thời gian trống giữa 2 xung liên tiếp có điện nhỏ hơn 0.1Um (hoặc 0.5Um).
Hệ số lấp đầy là tỷ số giữa độ rộng xung tx và chu kỳ xung T
(3)
Do T = tx + tng vậy ta luôn có
Độ rỗng của xung là tỷ số giữa chu kỳ xung T và độ rộng xung tx.
(4)
* Trong kỹ thuật xung - số người ta sử dụng phương pháp số đối với tín hiệu xung với quy ước chỉ có 2 trạng thái phân biệt
- Trạng thái có xung (tx) với biên độ lớn hơn một ngưỡng UH gọi là trạng thái cao hay mức “1”, mức UH thường chọn cỡ từ 1/2Vcc đến Vcc.
- Trạng thái không có xung (tng) với biên độ nhỏ hơn 1 ngưỡng UL gọi là trạng thái thấp hay mức “0”, UL được chọn tùy theo phần tử khóa (tranzito hay IC)
- Các mức điện áp ra trong dải UL < U < UH được gọi là trạng thái cấm
* Dạng xung vuông
U(t) =
U(t) = u1(t) + u2(t) với
U1(t) = 1(t0) =
U2(t) = -1(t0) =
1.3.Các tham số cơ bản của tam giác
Xung tam giác được sử dụng phổ biến trong các hệ thống điện tử, thông tin, đo lường hay tự động điều khiển làm tín hiệu chuẩn hai biên độ và thời gian có vai trò không thể thiếu được hầu như trong mọi hệ thống hiện đại
Dạng xung tam giác :
Hình trên đưa ra dạng xung tam giác lý tưởng với các tham số chủ yếu như sau:
- Biên độ cực đại Umax
- Mức một chiếu ban đầu u(t = 0) = U0
- Chu kỳ lặp lại T với xung tuần hoàn. Thời gian quét thuận tq, thời gian quét ngược tng.
Thông thường tng >> tq.
Tốc độ quét thuận là K = , hay độ nghiêng của đường quét.
Để đánh giá chất lượng u thực tế s với lý tưởng có hệ số không đường thẳng được định nghĩa là:
Ngoài ta còn có một số tham số khác như:
Tốc độ quét trung bình: KTB = , và hiệu suất năng lượng
Từ đó ta có hệ số phẩm chất của u là Q = .
Nguyên lý tạo xung tam giác dựa trên việc sử dụng quá trình nạp hay phóng điện của tụ điện qua một mạch nào đó, khi đó quan hệ dòng điện và điện áp trên tụ biến đổi theo thời gian là:
ic(t) = C hay
trong điều kiện C là một hằng số, muốn quan hệ uc(t) tuyến tính cần thỏa mãn điều kiện ic(t) là một hằng số, hay sự phụ thuộc của điện áp theo thời gian càng tuyến tính thì dòng điện phóng hay nạp cho tụ càng ổn định
- Có 2 dạng điện áp cơ bản là: thời gian quét thuận tq, u tăng tuyến tính dạng đường thẳng nhờ quá trình nạp cho tụ từ nguồn một chiều nào đó và trong thời gian quét ngược tng, u giảm đường thẳng nhờ quá trình phóng điện của tụ qua một mạch tải. Với mỗi dạng trên có các yêu cầu khác nhau để đảm bảo tng >> tq, với dạng tăng đường thẳng cần nạp chậm phóng nhanh, hoặc dạng giảm đường thẳng cần nạp nhanh phóng chậm.
- Việc điều khiển tức thời các mạch phóng nạp cho tụ thường sử dụng các khóa điện tử transistor hay IC đóng mở theo nhịp điều khiển từ ngoài. Trên thực tế để ổn định cho dòng nạp nay phóng điện cho tụ cần có một khối tạo nguồn dòng để nâng cao chất lượng xung tam giác.
2.CÁC PHƯƠNG PHÁP BIẾN ĐỔI VÀ TẠO DẠNG XUNG
Như chương 1 chúng ta đã biết về một số loại mạch lọc dùng các phần tử thụ động LR, RC, LC… với các lối ra trên R, L, C từ các lối ra của mạch lọc và với các thông số thích hợp. Từ đó ta có thể làm thay đổi các dạng xung lối ra của các mạch lọc. Ta có các phương pháp biến đổi dạng xung dùng các phần tử tích cực hoặc các phần tử thụ động như R, L, C.
2.1. Mạch vi phân
2.1.1. Định nghĩa và khái niệm
Mạch tích phân là mạch mà điện áp ra u0(t) tỷ lệ với đạo hàm thep thời gian của điện áp đầu vào ui(t)
Ta có u0(t) = k
Trong đó k là hệ số tỷ lệ phụ thuộc vào các hệ số của mạch vi phân
Trong kỹ thuật xung mạch vi phân cáo tác dụng thu hẹp độ rộng xung lối vào và tạo ra các xung nhọn để kích các linh kiện điều khiển hay linh kiện công xuất như triac
a. Mạch vi phân dùng RC
Hình 2.1: Mạch vi phân dùng RC
Tín hiệu lối vào là vi(t) tuần hoàn với chu kỳ T, tần số góc là , tín hiệu lối ra là v0(t)
Trở kháng của mạch là
Khi đó đặt là tần số cắt của mạch
Dòng điện trong mạch là
Điện áp lối ra sau khoảng thời gian là từ t0 đến t1 là
Khi đó ta có lối vào là tín hiệu xung vuông thì lối ra là tín hiệu xung vi phân
Tín hiệu lối ra trên mạch vi phân RC
Tín hiệu lối vào là Sin thì tín hiệu lối ra là sin sớm pha 900
thì tín hiệu lối ra là
b. Mạch vi phân dùng RL
Mạch vi phân dùng RL
Tín hiệu lối vào là tín hiệu xoay chiều có tần số góc là
Tổng trở của mạch là trong đó là trở kháng của cuộn cảm
Dòng điện trong mạch là i = , và điện áp lối ra trên cuộn cảm là
=, coi rất nhỏ so với 1 khi đó
Tính toán ta được điện áp lối ra tỷ lệ vi phân với điện áp lối vào ui(t)
. Trong đó k hệ số tỷ lệ k =
Dạng tín hiệu ra như hình trên
2.1.2. Mạch khuếch đại thuật toán vi phân
Mạch vi phần dùng khuếch đại thuật toán
Sơ đồ mạch khuếch đại vi phần dùng khuếch đại thuật toán với lối vào đảo, mạch phân áp vi phân là điện trở R2 và tụ C. Điện trở R1 làm ổn định tổng trở của lối vào (là điện trở ghép tránh cho nguồn xoay chiều lối vào nối đất vì ở đây lối vào – của bộ khuếch đại thuật toán được coi là đất ảo). Điện trở R3 có tác dụng bù nhiệt làm ổn định mạch khuếch đại, thường chọn R2 = R3
Lối vào được đưa tới tụ C tới lối vào đảo của khuếch đại thuật toán, điện trở R2 lấy tín hiệu hồi tiếp từ lối ra tới lối vào đảo của khuếch đại thuật toán.
Dòng điện lối vào đảo của khuếch đại thuật toán là
Iin = C
Dòng điện hồi tiếp từ lối ra tới lối vào là IR2 =
Do tính chất của bộ khuếch đại thuật toán điện trở lối vào vô cùng lớn, điện trở lối ra vô cùng nhỏ nên ta coi dòng lối vào đảo của khuếch đại thuật toán xấp xỉ 0
Áp dụng tính chất dòng điện nút ta có
.
Từ đó ta có Iin = IR2 hay
2.2. Mạch tích phân
2.2.1. Định nghĩa và khái niệm
Mạch tích phân là mạch mà điện áp ra u0(t) tỷ lệ với tích phân của điện áp vào ui(t)
trong đó k là hệ số tỷ lệ phụ thuộc vào mạch
a. Mạch tích phân dùng RC
Mạch RC lối ra trên C
Tín hiệu lối vào là vi(t) tuần hoàn với chu kỳ T, tần số góc là , tín hiệu lối ra là v0(t)
Trở kháng của mạch là
Khi đó đặt là tần số cắt của mạch
Dòng điện trong mạch là
Điện áp lối ra trên tụ là
Điện áp lối ra thay đổi khoảng thời gian là
Khi tần số lối vào fi >> fC hay fi >>
là hằng số thời gian của mạch khi đó trong đó Ti là chu kỳ tín hiệu lối vào
Với điều kiện như trên thì tổng trở của mạch khi đó tín hiệu lối ra của mạch là
với k =
Khi tín hiệu lối vào là xung sin thì tín hiệu lối ra cũng là xung sin và bị trễ pha đi 900.
Khi tín hiệu lối vào là xung vuông thì tín hiệu lối ra là xung tích phân của tín hiệu lối vào tương ứng với dạng xung phóng nạp cho tụ
Dạng tín hiệu vào và ra của mạch tích phân
Trường hợp 1: khi khi đó thời gian phóng nạp cho tụ C là rất nhanh coi như tức thì dẫn tới tín hiệu lối ra như hình B
Trường hợp 2: khi khi đó tụ C nạp và phóng điện theo hàm exp với biên độ đỉnh thấp hơn mức bão hòa tín hiệu lối ra như hình C
Trường hợp 2: khi khi đó tụ C nạp và phóng điện rất chậm điện áp lối ra thấp theo hàm exp khi đó điện áp tăng dần theo hàm mũ, do thời gian phóng nạp rất chậm nên hàm exp gần như dạng tuyến tính do đó tín hiệu lối ra như hình D
Do đó với mạch tích phân dùng RC khi chọn các giá trị RC phù hợp ta sẽ được các dạng xung lối ra khác nhau khi dạng xung lối vào là xung vuông
Trường hợp khi xung vuông lối vào có độ rộng khác nhau thì khi tín hiệu lối ra trên tụ thực hiện với thời gian nạp lớn hơn thời gian phóng và ngược gại gây ra hiện tượng điện áp rơi trên tụ tăng hoặc giảm dần
Dạng tín hiệu vào và ra của xung xuông có độ rộng xung khác nhau.
b. Mạch tích phân dùng RL
Mạch tích phân dùng RL
Đáp ứng tần số như mạch lọc RC. Tần số cắt của mạch lọc là
Điện áp lối ra của mạch lọc thông thấp là
2.2.2. mạch tạo điện áp biến đổi đường thẳng
Mạch tích phân dùng khuếch đại thuật toán điện áp ra biến đổi đường thẳng
Mạch tích phân dùng khuếch đại thuật toán với phần tử R1 và C, hằng số thời gian của mach là . Ở đây điện trở R2 bù nhiệt cho mạch làm ổ định mạch khuếch đại, thường R1 = R2
Dòng điện lối vào là
Dòng điện trên tụ C là
Với khuếch đại thuật toán ta có hay Iin - Ic = 0 => Iin = IC
Do đó ta có
ở đây k = vì mạch tích phân dùng khuếch đại thuật toán với lối vào đảo do đó tín hiệu lối ra sẽ ngược pha so với tín hiệu lối vào
Nếu tín hiệu lối vào là xung vuông thì tín hiệu lối ra là xung tam giác như dạng tín hiệu ở hình trên.
3. CÁC MẠCH DAO ĐỘNG XUNG
3.1. Các mạch không đồng bộ hai trạng thái ổn định
Các mạch có hai trạng thái ổn định ở đầu ra được đặc trưng bởi hai trạng thái ổn định bền theo thời gian và việc chuyển nó từ trạng thái này sang trạng thái khác chỉ xảy ra khi đặt tới lối vào một xung điện áp có biên độ và cực tính phù hợp, đó là phần tử cơ bản cấu tạo lên bộ nhớ với các số nhị phân 0 hoặc 1
Trigơ đối xứng (RS) dùng tranzitor
Trigơ RS dùng tranzitor
Nguyên lý hoạt động:
Trigơ RS chỉ có 2 trạng thái ổn định bền là T1 mở bão hòa và T2 đóng tương ứng với lối ra của mạch Q = 1 và , hoặc T2 mở bão hòa và T1 đóng tương ứng với lối ra của mạch Q = 0 và
Các trạng thái còn lại là không xảy ra khi T1 và T2 cùng đóng hoặc mở bão hòa.
T1, T2 không thể cùng đóng do nguồn +Ecc khi đóng mạch sẽ cung cấp 1 điện ápdương nhất định đến bazơ của T1 và T2 (thông qua trở RC và R2 cho tranzitor T2, hoặc trở RC và R1 cho tranzitor T1) cùng mở. Do tính chất không đối xứng lý tưởng của mạch điện, chỉ cần 1 sự chênh lệch nhỏ về dòng điện trên cực bazơ của 2 tranzitor (IB1 IB2 dẫn đến IC1 IC2), ví dụ IB1 > IB2 dẫn đến dòng IC1 > IC2 (do IC = IB) khi đó sụt áp trên trở tải RC colector của T1 lớn hớn sụt áp trên trở tải RC colector của T2, qua đường hồi tiếp về từ colector T2 qua R1 tới Bazơ của T1 và từ colector T1 qua R2 tới Bazơ của T2 làm cho T1 càng mở và T2 càng đóng sau một khoảng thời gian t rất nhỏ nào đó sẽ dẫn tới T1 mở bão hòa và T2 khóa, khi đó mạch ở trạng thái ổn định bền và khi đó lối ra của mạch là Q = 1 và tương ứng điện áp ra ở colector của T2 ở mức cao và trên T1 ở mức thấp.
Trường hợp ngược lại IB1 < IB2 tương tự như trên ta có T1 khóa và T2 thông bão hòa. Và lối ra tương ứng của mạch là Q = 0 và , tương ứng điện áp ra ở colector của T1 ở mức cao và trên T2 ở mức thấp.
Từ phân tích ở trên trong trường hợp số hóa ta có bảng chân lý như sau
Đầu vào
Đầu ra
Rn
Sn
Qn+1
0
0
Qn
1
0
0
1
0
1
1
0
1
1
Trạng thái cấm
3.2. Trigơ Smit dùng IC tuyến tính
Trigor smit dùng IC tuyến tính tương tự như bộ so sánh (khuếch đại thuật toán) có hồi tiếp dương từ đầu ra tới 1 lối vào so sánh, còn lối vào còn lại được đưa tới lối vào so sánh thứ 2
a. Trigơ smit lối vào đảo
Sơ đồ và giản đồ xung trigor smit dùng IC tuyến tính
Khi Uvào có giá trị âm lớn tức u- > u+ khi đó lối ra ura = ura max, qua mạch hồi tiếp dương tới lối vào không đảo ta có điện áp trên lối vào dương là u+ = = uvào ngắt.
Tăng dần điện áp uvào cho đến khi uvào < uvào ngắt thì khi đó điện áp lối ra không đổi.
Khi tăng Uvào > u+ = uvào ngắt khi khi đó qua bộ so sánh với lối vào đảo lớn hơn lối vào thuận dẫn tới lối ra lật trạng thái từ Ura max xuống –ura max và qua mạch hồi tiếp dương điện áp trên lối vào thuận là u- = - = uvào đóng.
Tăng tiếp điện áp lối vào khi đó điện áp lối ra sẽ không bị thay đổi ura = -ura max
Khi giảm Uvào từ một giá trị dương lớn cho tới mức uvào >= uvào đóng khi đó mạch vẫn giữ nguyên trạng thái.
Khi giản tín hiệu lối vào uvào < uvào đóng khí đó điện áp lối vào đảo nhỏ hơn điện áp lối vào thuận, tín hiệu lối ra sẽ chuyển trạng thái từ ura = ura max thành –ura max
Để mạch ở trạng thái ổn định thì >=1 trong đó K là hệ số khuếch đại của bộ khuếch đại thuật toán và
giản đồ xung lối ra của trigơ smit dùng IC tuyến tính lối vào đảo
b. Trigơ smit lối vào thuận
Sơ đồ và giản đồ xung trigor smit dùng IC tuyến tính
Khi Uvào có giá trị âm lớn tức u+ > u- khi đó lối ra ura = -ura max, qua mạch hồi tiếp dương tới lối vào không đảo ta có điện áp trên lối vào dương là
. Để lối ra lật trạng thái thì up = 0 tức là
khi đó tương ứng với lối vào khóa up = 0. từ đó ta có uvào khóa =
Tăng dần điện áp uvào cho đến khi uvào < uvào ngắt thì khi đó điện áp lối ra không đổi.
Khi tăng Uvào > uvào ngắt khi khi đó qua bộ so sánh với lối vào đảo lớn hơn lối vào thuận dẫn tới lối ra lật trạng thái từ -Ura max thành +ura max .
Tăng tiếp điện áp lối vào khi đó điện áp lối ra sẽ không bị thay đổi ura = ura max
Khi giảm Uvào từ một giá trị dương lớn cho tới mức uvào >= uvào đóng khi đó mạch vẫn giữ nguyên trạng thái.
Khi giản tín hiệu lối vào uvào < uvào đóng khí đó điện áp lối vào đảo nhỏ hơn điện áp lối vào thuận, tín hiệu lối ra sẽ chuyển trạng thái từ ura = ura max thành –ura max
giản đồ xung lối ra của trigơ smit dùng IC tuyến tính lối vào đảo
4. CÁC MẠCH KHÔNG ĐỒNG BỘ MỘT TRẠNG THÁI ỔN ĐỊNH
Đây là mạch có một trạng thái ổn định bền. Trạng thái thứ 2 của nó chỉ tồn tại trong một khoảng thời gian nào đó (phụ thuộc vào các tham số hay là các phần tử trong mạch điện) sau đó nó sẽ quan trở về trạng thái ổn định bền ban đầu
4.1. Đa hài đợi dùng tranzitor
Sơ đồ mạch đa hài đợi dùng transitor và giản đồ xung
Sơ đồ mạch đa hài đợi dùng tranzitor tương tự như trigơ RS dùng transitor ở đây ta thay điện trở R2 bằng tụ C để đưa thành phần hồi tiếp dương xoay chiều từ colector của Tranzitor T1 về cực Bazơ của tranzitor T2.
Tại thời điển t = t0 khi không có xung lối vào tác động giả sử tranzitor T2 thông khi đó qua mạch hồi tiếp R1 về bazơ của T1 làm cho tranzitor T1 cấm
Tại thời điểm t = t1 có 1 xung dương lối vào qua R2 đưa vào cực bazơ của T1 là cho T1 mở ngay lập tức khi đó điện áp trên colector của T1 chuyển trạng thái từ +Ecc về xấp xỉ 0V, khi đó qua mạch tích phân RC làm cho điện áp trên tụ C bị lật trạng thái từ 0.6V xuống còn xấp xỉ -Ecc (do tụ C đang được nạp đầy điện từ RC qua tụ C và qua BE của T2 xuống đất khi đó điện áp trên tụ xấp xỉ Ecc, do đó khi thay đổi trạng thái tức là làm thay đổi cực xác định trên tụ). Do đó tranzitor T2 cấm và lối ra ở mức thấp. Tụ C lúc này được nạp điện từ +Ecc qua R, C qua CE của tranzitor xuống đất và điện áp trên tụ C tăng dần từ -Ecc.
Giản đồ xung tín hiệu ra mạch đa hài đợi dùng tranzitor
Điện áp trên tụ tăng dần biến đổi theo hàm mũ
UBE2 = E(1-exp(-t/RC)
Do điều kiện đầu là UB2(t=t1) = -ECC và khi tụ C nạp đến giá trị cực đại là UB2(t=) = ECC.
Điện áp trên tụ tăng dần cho tới khi UBE2 =0.6 V (tranzitor silic) và 0.3 V với (gesmani) tương ứng với thời điểm t = t2 khi đó tranzitor T2 sẽ mở và qua mạch hồi tiếp R1 từ colector của T2 sẽ nhanh chóng làm cho T1 cấm và T2 mở bão hòa.
Thời gian kéo dài xung ra là tx = RCln2 = 0.7RC, khi đó mạch sẽ ở trạng thái ổn định bền và chờ tiếp xung tác động ở lối vào để thay đổi trạng thái tiếp theo ở lối ra.
4.2. Đa hài đợi dùng khuếch đại thuật toán
Với mạch khuếch đại thuật toán trên, mạch được cấp nguồn nuôi là ECC, khi đó tín hiệu lối ra là Ura max
Mạch nguyên lý đa hài đợi dùng khuếch đại thuật toánv lối vào – và +
Với sơ đồ hình A. tại thời điểm ban đầu t<t0 Ui = 0, Diode D thông, điện áp trên cực N nối đất, với trường hợp bỏ qua sụt áp trên Diode, U0