Đề tài Ứng dụng đạo hàm của hàm một biến hay nhiều biến trong bài toán kinh tế

Ví dụ : Một doanh nghiệp đưa vào thị trường sản phẩm A, thông tin có được như sau : Hàm cầu là P = 600 – 2Q Hàm chi phí là TC = 0,2Q2 + 28Q +200 a) Tìm mức sản xuất Q để doanh nghiệp đạt lợi nhuận tối đa, khi ấy giá bán và lợi nhuận đạt được là bao nhiêu? b) Nếu mỗi đơn vị sản lượng Q, công ty phải nộp thuế 22 đơn vị tiền tệ thì sản lượng và giá bán là bao nhiêu để công ty đạt lợi nhuận tối đa? Khi ấy lợi nhuận là bao nhiêu?

doc23 trang | Chia sẻ: tuandn | Lượt xem: 3848 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Ứng dụng đạo hàm của hàm một biến hay nhiều biến trong bài toán kinh tế, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
CHUÛ ÑEÀ: ỨNG DỤNG ĐẠO HÀM CỦA HÀM MỘT BIẾN HAY NHIỀU BIẾN TRONG BÀI TOÁN KINH TẾ Mã Môn Học: MAT101 Nhóm: 03 DANH SÁCH THÀNH VIÊN DQT103387  Hà Bảo Anh   DQT103388  Huỳnh Ngọc Lan Anh   DQT103389  Huỳnh Thị Xuân Anh   DQT103390  Nguyễn Lê Minh Anh   DQT103391  Nguyễn Cao Duy Ân   DQT103392  Phan Bảo Ân   DQT103393  Lê Thị Ngọc Bích   DQT103395  Đỗ Minh Chánh   DQT103396  Phan Thị Minh Châu   DQT103397  Trần Thị Chi   DQT103398  Lê Thiện Chí   DQT103399  Ngô Văn Công   DQT103400  Nguyễn Hoàng Cung   DQT103402  Trần Võ Quốc Cường   DQT103403  Hồ Thị Mỹ Danh   DQT103404  Lưu Văn Dợn   DQT103405  Đặng Thị Thúy Duy   DQT103406  Trình Ngọc Duy   DQT103407  Phạm Thị Thanh Duyên   DQT103408  Huỳnh Anh Dũng   DQT103409  Nguyễn Phước Dư   DQT103410  Nguyễn Thị Thùy Dương   DQT103411  Nguyễn Thị Thùy Dương   DQT103413  Võ Thanh Đào   DQT103414  Nguyễn Thanh Đạt   DQT103416  Vũ Trường Giang   DQT103417  Nguyễn Hồ Hải   DQT103419  Lou Anh Hào   DQT103421  Dương Thị Thanh Hằng   DQT103423  Trần Thị Kim Hằng   DQT103631  Nguyễn Thị Gọn   A. ỨNG DỤNG ĐẠO HÀM CỦA HÀM MỘT BIẾN I. Cơ sở lý thuyết 1. Một số kết quả trong toán cao cấp a.Định nghĩa đạo hàm: Cho hàm số y = f(x), xác định trên (a,b)  Đạo hàm của f tại xo là:  b.Đạo hàm và độ dốc của đường cong: y (C) y0+ y0 N  0 x0 x0+ x Cho y = f(x) có đồ thị là đường cong (C), xo D: miền xác định của hàm số Gọi  là góc nghiêng của đường thẳng MoM so với trục Ox Gọi  là góc nghiêng của tiếp tuyến MoT so với trục Ox Ta có:  Khi  đường thẳng (MoM) đến vị trí tiếp tuyến MT   Ta kết luận: Đạo hàm của y = f(x) tại xo là hệ số góc của tiếp tuyến của đồ thị hàm số tại Mo(xo,yo) Và  là số đo độ dốc của đường cong y = f(x) tại Mo(xo,yo) c. Vi phân của hàm số y = f(x) là dy = df =  d. Đạo hàm và xu hướng biến thiên của hàm số Cho y = f(x) có đạo hàm trong (a,b)R, khi đó:  hàm số tăng  hàm số giảm  f là hàm hằng Cực trị của hàm số Cho y = f(x), xác định trên (a,b) Điểm cực trị địa phương x0(a,b) của hàm f là điểm mà tại đó hàm số đạt trị lớn nhất (cực đại), hoặc trị nhỏ nhất (cực tiểu). Điều kiện cần: f đạt cực đại hoặc cực tiểu tại x0(a,b) và tại x0 hàm f có đạo hàm. Thì  Điều kiện đủ: cho y = f(x), có  trên (a,b)R. Giải , ta tìm được các nghiệm x0, x1,… gọi là các điểm tới hạn. Nếu: + Tại x0,  đổi dấu từ + sang – thì f có cực đại + Tại x0,  đổi dấu từ - sang + thì f có cực tiểu + Nếu  không đổi dấu thì hàm f không có cực trị Điều kiện đủ theo đạo hàm cấp 2: + Hàm số y = f(x), có đạo hàm đến cấp 2 + Nếu tại x0 ta có =0 và  thì hàm số đạt cực trị tại x0 x0 là điểm mà f đạt cực đại nếu  x0 là điểm mà f đạt cực tiểu nếu  2. Ý nghĩa của đạo hàm trong kinh tế Đạo hàm và giá trị biên tế trong kinh tế Cho mô hình hàm số y = f(x), x và y là các biến kinh tế x: biến độc lập hay biến đầu vào y: biến phụ thuộc hay biến đầu ra Trong quản trị kinh doanh, chúng ta quan tâm đến xu hướng thay đổi của y, khi x thay đổi một lượng nhỏ Với định nghĩa đạo hàm trong toán cơ bản, ta có: khi đủ nhỏ, ta có thể viết:  Khi  Vậy đạo hàm biểu diễn xấp xỉ lượng thay đổi của biến số y khi biến số x tăng thêm một đơn vị Với quan hệ hàm y = f(x), để mô tả sự thay đổi của biến kinh tế y, khi biến kinh tế x thay đổi, ta gọi  là giá trị biên tế y tại x0 (còn gọi là biên tế) Với mỗi hàm kinh tế, ta có một tên gọi riêng: Thí dụ: Với hàm doanh thu: TR = p.Q thì  được gọi là doanh thu biên tế Với hàm chi phí: TC = f(x), x: sản lượng thì  :chi phí biên tế Với hàm sản xuất: Q = f(L), L: lao động thì  sản lượng biên tế II. Một số bài toán ứng dụng trong sản xuất kinh doanh Bài toán giá trị biên Sản lượng biên (Marginal quantity), kí hiệu MQ: Là số đo đại lượng thay đổi của sản lượng khi lao động ha vốn tăng lên 1 đơn vị. Thí dụ 1: Giả sử hàm sản xuất của một doang nghiệp là: Q = f(L) = 5  L: số công nhân Ở mức L = 100 đơn vị lao động = 100 công nhân thì Q = 5 = 50 đơn vị sản phẩm. Sản phẩm biên tế của lao động tại L = 100 là:  = f’(L) =  =  = 0.25 khi L = 100 Điều này có nghĩa là: khi tăng mức sử dụng lao đông từ 100 ( 101 thì sản lượng sẽ tăng thêm 0.25 đơn vị sản phẩm. Thử xét: L  100  110  120  150  200  400  1.000   MQ  0.25  0.23  0.22  0.2  0.17  0.125  0.079   Nhận xét: MQ là một hàm số giảm dần, đến một số lượng công nhân nhất định nào đó, việc tuyển thêm công nhân không còn hiệu quả, chỉ tăng thêm chi phí. MQ Thí dụ 2: Giả sử hàm sản xuất của 1 doanh nghiệp may mặc: Q= f(L) = 5 + 7 L:số công nhân Ở mức L=2500 dơn vị lao động = 2500 công nhân thì Q= 355 dơn vị sản phẩm. Sản phẩm biên tế của lao động tại L=2500 là:  = f’(L) =  =  = 0.07 khi L= 2500 Điều này có nghĩa là : khi tăng mức sử dụng lao động từ 2500 đến 2501 thì sản lượng tăng 0.07 đơn vị sản phẩm . Sự thay đổi của giá theo cầu: Là số đo sự thay đổi của giá khi mức sản lượng tăng lên đơn vị. Thí dụ 1: Hàm cầu của một sản phẩm: P = 10 – Q2 , Q là sản lượng, P là giá bán. Sự thay đổi cuả giá bán theo lượng cầu là: P’ = -2Q. Gỉa sử ở mức Q = 5 đơn vị thì P’(5) = -10: Nghĩa là khi tăng sản lượng lên 1 đơn vị (từ 5 lên 6), giá giảm 10 đơn vị tiền tệ. Thí dụ 2: Giả sử 1 shop cửa hàng quần áo có hàm cầu một cái áo :P= 8 -2Q2, Q là sản lượng , P là giá bán. Sự thay đổi của giá theo lượng cầu :P’ = -4Q. Giả sử ở mức Q= 10 đơn vị thì P’(10) =-40 nghĩa là khi tăng sản lượng một đơn vị thì giá giảm 40 đơn vị tiền tệ . Chi phí biên (Marginal cost), kí hiệu MC: Hàm chi phí: TC = TC(Q) Chi phí biên là đại lượng đo sự thay đổi của chi phí khi sản lượng Q tăng lên 1đơn vị. Thí dụ 1: Hàm chi phí một sản phẩm được cho là: TC = 0.0001Q3 – 0.02Q2 + 5Q + 100 Tìm MC và MC là bao nhiêu khi Q = 50 đơn vị sản lượng ?  = (0.0001Q3 – 0.02Q2 + 5Q + 500) =0.0003Q2 – 0.04Q + 5 Khi Q = 50, thì MC = 3.75 Điều này có nghĩa là: Khi sản xuất tăng thêm 1 đơn vị sản lượng (từ 50 lên 51) thì chi phí tăng thêm 3.75 đơn vị tiền tệ. Chúng ta tính MC ở một số mức sản lượng khác nhau: Q  30  40  50  60  70  80  90   MC  4.07  3.88  3.75  3.68  3.67  3.72  3.83   Q  100  120  150  180  200  300  500   MC  4  4.52  5.75  7.52  9  20  60   Nhận xét: -Chi phí biên là một hàm tăng -Sản lượng sản xuất càng lớn thì chi phí biên càng lớn. Doanh thu biên (Marginal revenue), kí hiệu MR: Xét hàm doanh thu: TR = P.Q; P: giá; Q: sản lượng Nếu: Q do thị trường quyết định, giá do doanh nghiệp quyết định, thì MR hay giá trị cận biên của doanh thu là đại lượng đo sự thay đổi của doanh thu khi sản lượng tăng thêm một đơn vị. Nếu: Q do doanh nghiệp quyết định, P do thị trường quyết định thì MR hay giá trị cận biên cảu doanh thu là đại lượng đo sự thay đổi cảu doanh thu khi giá tăng 1 đơn vị. Ví dụ1: Cho hàm chi phí C =C(Q). giá trị biên của chi phí MC(Q) là đại lượng đo sự thay đổi của chi phí Ckhi Q tăng lên một đơn vị. Cho hàm chi phí trung bình để san xuất ra một chiếc máy tính là:  = 0.0003Q2 - 0.001Q + 3 + Tìm giá trị cận biên của chi phí đối với mức sản xuất Q.giá trị cận biên của chi phí là bao nhiêu nếu mức sản xuất Q =70. Giải: Hàm tổng chi phí sản xuất Q đơn vị sản phẩm là: C =Q. =0.0003Q3 -0.001Q2 +3Q+200 Gía trị cận biên của chi phí là: MC(Q) = =0.0009Q2 -0.002Q +3 Khi Q =70 thì MC(70) =7,72.Như vậy, nếu tăng Q lên một đơn vị từ 70 lên 71 thì chi phí tăng lên khoảng 7,72 đơn vị. Ví dụ 2: Một sản phẩm có hàm cầu là Q=1000-14P, Q là sản lương, P là giá bán.tìm doanh thu biên khi P=10,50. Ta có hàm doanh thu: TR = PQ =P(1000-14P) =1000P – 14P2 Có : MR= 1000 – 28P Với P=10, ta có MR=720 nghĩa là khi tăng giá bán lên từ 10 đến 11 (tăng một đơn vị tiền tệ) thì doanh thu sẽ tăng 720 đơn vị tiền tệ. Với P=50, ta có MR=-400 nghĩa là khi tăng giá bán lên mức từ 50 đến 51 thì doanh thu sẽ giảm một mức 400 đơn vị tiền tệ. Thí dụ 3: Một sản phẩm trên thị trường có hàm cầu là: Q= 1.000 - 14P, Q là sản lượng, P là giá bán. Tìm MR khi P = 40 và P = 30 Hàm doanh thu là: TR = PQ = P(1.000 – 14P) = 1.000P – 14P2 MR = 1.000 – 28 P *Khi P = 40, MR = 1000 – 28(40) = -120 Nghĩa là khi doanh nghiệp tăng giá từ 40 lên 41 (tăng 1 đơn vị tiền tệ), thì doanh thu sẽ giảm 120 đơn vị tiền tệ. *Khi P = 30, MR = 1.000 – 28(40) = 160 Nghĩa là khi doanh nghiệp tăng giá từ 30 lên 31 (tăng 1 đơn vị tiền tệ), thì doanh thu sẽ tăng 160 đơn vị tiền tệ. Ta tính MR ở một số mức khác nhau: P  30  32  34  35  35.5  36  38  40   MR  120  104  48  20  6  -8  -64  -120   Nhận xét: - MR là một hàm số giảm, - Có một mức giá MR = 0. 0 Cũng với thí dụ này Q = 1000 – 14P, chúng ta có thể tính một cách khác 14P = 1.000 – Q ( P = , khi đó doanh thu là TR = PQ =  =  MR =  =  đo lượng thay đổi của doanh thu khi sản lượng tăng thêm 1 đơn vị. MR ở một số mức sản lượng như sau: Q  200  300  400  500  600  700  800   MR  42.8  28.5  14.9  0  -14.9  -28.5  -42.8   Nhận xét: - MR là một hàm số giảm, - Có một mức sản lượng MR = 0 Lợi nhuận biên Xét hàm lợi nhuận của sản phẩm A:  = TR – TC = PQ – (FC + VC(Q)), Trong đó: - TR là hàm doach thu; - TC là hàm chi phí; - FC là định phí, VC(Q) là biến phí. Lợi nhuận biên hay lợi nhuận cận biên là số đo sự thay đổi của lợi nhuận khi giá tăng thê một đơn vị tiền tệ hay sản lượng tăng thêm một đơn vị. Một doanh nghiệp luôn muốn đạt được lợi nhuận tối đa, có hai cách để lựa chọn: Cách 1: Gía bán P được xách định theo yêu cầu thị trường, doanh nghiệp ấn định mức sản lượng sản xuất Q. Giả định  là hàm xác định, liên tục, có đạo hàm đến cấp 2. Muốn có lợi nhuận tối đa phải thỏa 2 điều kiện: (1)  = (TR-TC) =  -  = MR – MC = 0 (2)  = (TR – TC) < 0 Từ (1) ( MR = MC, nghĩa là doanh thu biên = chi phí biên Từ (2) ( <. Đã biết: Doanh thu biên là hàm giảm, chi phí biên là hàm tăng. Cách 2: Doanh nghiệp ấn định giá bán P, sản lượng Q được xác định theo yêu cầu thị trường.  = TR – TC  = (TR – TC) =  -  = 0 ( =  (1) = (TR – TC)<0 ( < Ta có:  cực đại tại MR = MC. f. Đạo hàm cấp 2 và quy luật lợi ích cận biên giảm dần : Xét hàm mục tiêu y = f(x) x : yếu tố đầu vào; y: yếu tố đầu ra Qui luật lợi ích cận biên giảm dần ( the law of diminishing returns) cho biết : Khi x càng lớn thì giá trị cận biên của y càng nhỏ Nghĩa là f’(x) là một hàm đơn điệu giảm Điều kiện để giá trị cận biên của y giảm dần theo x là : f’’(x) < 0 Ví dụ : Một doanh nghiệp đưa vào thị trường sản phẩm A, thông tin có được như sau : Hàm cầu là P = 600 – 2Q Hàm chi phí là TC = 0,2Q2 + 28Q +200 a) Tìm mức sản xuất Q để doanh nghiệp đạt lợi nhuận tối đa, khi ấy giá bán và lợi nhuận đạt được là bao nhiêu? b) Nếu mỗi đơn vị sản lượng Q, công ty phải nộp thuế 22 đơn vị tiền tệ thì sản lượng và giá bán là bao nhiêu để công ty đạt lợi nhuận tối đa? Khi ấy lợi nhuận là bao nhiêu? Câu a : Có 2 cách giải quyết Cách 1: Hàm doanh thu : TR = PQ = (600 – 2Q)Q = 600Q -2Q2 Hàm lợi nhuận là : = TR – TC = - 2,2Q2 + 572Q – 200 Để  đạt tối đa thì :  đơn vị sản lượng Khi đó giá bán trên thị trường là : P = 600 – 2.130 = 340 đv tiền tệ Lợi nhuận đạt được là: – 37.180 + 74.360 – 200 = 3698 đơn vị tiền tệ. Nhớ rằng chúng ta có thể tìm Q = đạt giá trị cực đại MR = MC 600 – 4Q = 0,4Q + 28  Cách 2: Từ P = 600 – 2Q Q = 300  TR = PQ = (300 )P = 300P - MR = 300 – P TC = 0,2 MC = 0,1P - 74 MR = MC 300 – P = 0,1P – 74P =  P = 340 đơn vị tiền tệ để lợi nhuận đạt được tối đa. Khi đó Q = 130 đơn vị ssản lượng, và  = 36..980 đơn vị tiền tệ Câu b: Nếu mỗi đơn vị sản lượng Q, công ty nộp thuế là là 22 đơn vị tiền tệ, thì hàm chi phí là: TC = 0,2Q2 + 28Q +22Q + 200 = 0,2Q2 + 50Q +200 MC = 0,4Q + 50 Hàm doanh thu là: TR = PQ = 600Q – 2Q2 MR = 600 – 4Q  đạt tối đa khi: MR = MC  600 - 4Q = 0,4Q + 50  Q = 125 đơn vị sản phẩm. Khi đó P = 350 đơn vị tiền tệ, lợi nhuận là 34.175 Nhận xét: Khi giá tăng từ 340 lên 350, tương đương 3% thì lợi nhuận giảm từ 36,980 xuống 34.1175 tương 7,6% Sản lượng giảm từ 130 xuống 125 tương đương 3,8%. h. Tiêu dùng và tiết kiệm: Gọi I là tổng thu nhập của quốc gia; C là tiêu dùng của toàn dân và S là tiết kiệm. ( Income, Cconsumption, Save) Tiêu dùng sẽ phụ thuộc vào thu nhập, do đó tiêu dùng là hàm số của thu nhập Gọi C = C(I) : hàm tiêu dùng; thì tiết kiệm là S = I – C. Tiêu dùng biên là đại lượng đo sự thay đổi của tiêu dùng khi thu nhập tăng một đơn vị, được xác định là : MC =  Tiết kiệm biên là đại lượng đo sự thay đổi của tiết kiệm khi thu nhập tăng 1 đơn vị, được xác định là : MS =  Lưu ý : người ta thường dùng đơn vị tiền tệ là 1 tỉ USD. (1 đv tiền = 1tỉ USD) Thí dụ : Hàm tiêu dùng quốc dân của một nước được cho là : , xác định xu hướng tiêu dùng và tiết kiệm biên ở mức tổng thu nhập quốc gia 400 tỉ USD? Tiêu dùng biên là :  ở mức I = 400 tỉ thì :  Do đó MS = 100% - 18% = 82% j. Một số bài toán khác ứng dụng đạo hàm: * BÀI TOÁN THUẾ DOANH THU Giả sử một xí nghiệp sản xuất độc quyền một loại hàng hóa. Biết hàm cầu của xí nghiệp về loại hàng hóa này là Qd=Qd(P) và hàm tổng chi phí của xí nghiệp là TC=TC(Q). Hãy xác định mức thuế t thu trên một đơn vị sản phẩm để thu được nhiều thuế nhất ? Giải: Gọi Q(t) là sản lượng làm cho xí nghiệp k tối đa hóa lợi nhuận với thuế là t. Q=Qd(P) hay P=P(Q) Doanh thu: TR=P(Q)*Q Chi phí: TC= chi phí sản xuất + thuế Lợi nhuận: LN(Q) =TR – TC - t(Q) Từ đây ta ứng dụng các nguyên lí tính toán trong đạo hàm sẽ cho kết quả. Ví dụ : Một doanh nghiệp độc quyền có hàm chi phí cầu tương ứng như sau : TC=Q2+1000Q+50 Qd = 2000 – P Xác định thuế t thu trên một đơn vị sản phẩm để CP có thể thu nhiều thuế nhất Giải : Gọi Q(t) là mức sản lượng của công ty là cho lợi nhuận của công ty tối đa tương ứng với mức thuế t. Ta sẽ đi tìm Q(t). Khi công ty sản xuất Q sản phẩm thì công ty phải bán với giá P sao cho : Q = 2000 – P hay P = 2000 – Q Khi đó doanh thu của công ty là : T = t(Q) Lợi nhuận của công ty : (Q)=P(Q)Q – C(Q) – t(Q) =-2Q2 + (1000 – t)Q -50 Dạo hàm của lợi nhuận bằng : -4Q + 1000 – t Từ điều kiện để lợi nhuận cực đại ta có : Q(t) = (1000 – t)/4 Vì đạo hàm cấp hai của lợi nhuận = -4<0 nên Q(t) là sản lượng làm cho xí nghiệp có lợi nhuận cực đại. Khi đó tổng số thuế thu được là T(t) = (1000 – t)t/4 Đạo hàm của thuế là : T’(t)= ¼ (1000 – 2t) Từ điều kiện T’(t) = 0 suy ra t = 500 Vì T’’(t) = ½ <0 nên t = 500 chính là định mức thuế để thu được nhiều thuế nhất. Khi đó sản lượng sản xuất của công ty là Q(t) = (1000 – 500)/4 = 125 Bài toán tối đa hóa lợi nhuận và tối đa hóa doanh thu - Tối đa hóa lợi nhuận:doanh nghiệp sẽ lựa chọn mức sản lượng mà tại đó chênh lệch giữa tổng doanh thu và tổng chi phí là lớn nhất. điều này có thể đạt được khi đạo hàm bậc nhất của hàm lợi nhuận bằng 0 d/dQ= dTR/dQ –dTC/dQ= 0 hay MC=MR Để tối đa hóa lợi nhuận, doanh nghiệp lựa chọn mức sản lượng Qe. Tại đó doanh thu biên bằng chi phí biên. - Tối đa hóa doanh thu: doanh thu là hàm số của giá và sản lượng hay TR= PQ. Mức sản lượng mà tại đó doanh nghiệp tối đa hóa doanh thu phải thỏa mãn điều kiện MR=0 Vd1: Hãng kẹo XuXu có hàm cầu là Q=100-P, hàm chi phí là  Tìm Q để lợi nhuận lớn nhất Giải: Q=100-P hay P=100-Q Từ đó doanh thu là R=(100-Q)Q và hàm lợi nhuận là =Q(100-Q)-() =    hoặc Q= 11  >0 <0 Từ đó  đạy cực đại khi Q=11, Vd2: Số vé bán được của một hãng xe buýt liên hệ giá vé P là : Q = 10000 – 125P Tìm mức giá P để doanh thu đạt mức tối đa. Tính lượng vé bán được ở mức giá đó. Giải: Ta có: R(P) = P.Q = P (10000 – 125P) = 125P2 + 10000P Để tìm cực đại của hàm R(P), ta sử dụng đạo hàm cấp 2 R’ = -250P + 10000, R’= 0 ( P = 40 R’’ = -250 Với P = 40, R’’ < 0 nên hàm R đạt cực đại tại P= 40 _Doanh thu lúc đó là Rmax= R(40) = 200000 ( đơn vị) _Với mức doanh thu đó số vé bán được là Q= 10000 – 125.40 = 5000 ( vé ) Với mô hình hàm chi phí TC = TC (Q) thì TC’ (Q) được gọi là chi phí cận biên tại điểm Q0 , chi phí cận biên được kí hiệu là MC, MC = TC’ (Q) tại mỗi mức lượng Q, MC cho biết lượng chi phí xấp xỉ tăng lên thêm khi sản xuất thêm một đơn vị sản phẩm. Độ co giãn của một hàm số a. Độ co dãn của một hàm số Cho hàm số: y = f(x), xác định trên (a,b). Muốn biết sự thay đổi của y phụ thuộc vào biến x như thế nào người ta xét đến hay Trong quản trị kinh doanh, tỷ số trên nhiều khi không cho nhà quản trị thấy rõ mối liên hệ giữa hai biến kinh tế x và y Thí dụ: Xét hàm cầu Q = f(q), cầu theo giá Với ∆Q = 10 và ∆p = 1   = 10 (đơn vị 1000 đ) Giả sử hai mặt hàng: Máy tính:  = 10.000 đồng Sữa hộp:  = 10.000 đồng Nhận xét: Đối với sữa hộp cho bé, chênh lệch 10.000 đồng là rất có ý nghĩa. Đối với máy tính, sự chênh lệch 10.000 đồng không cho thấy sự khác biệt nào. Để giả quyết vấn đề này, các nhà kinh tế định nghĩa: b. Định nghĩa độ co dãn của hàm số Cho y = f(x), xác định, liên tục, có đạo hàm trên (a,b) Độ co dãn của hàm dược ký hiệu là E và bằng:  Nhận xét rằng: Nếu ta thay: x1= x và y thì:  Như vậy độ co dãn của hàm số phụ thuộc vào x và y c. Hàm cầu biểu diễn quan hệ giá p và QD = f(p) Định nghĩa: Độ co dãn của cầu theo giá (ở mỗi mức giá) là số đo sự thay đổi phần trăm của lượng cầu khi giá tăng 1%  , Khi p  0 Thì  d. Hàm số cung biểu diễn quan hệ giữa giá p và Qs = G(p) Qs = G(p), cung được tính theo giá Định nghĩa: Hệ số co dãn của cung theo giá là số đo thay đổi phần trăm của cung khi giá tăng 1%  Vd: ứng dụng trong kinh tế về hệ số co dãn Vd1: cho hàm cầu Q= 60P2+12P-24. Tìm hệ số co dãn tại điểm P=5 Giải: Ta có: QP =(120P+12)  =  = 1.99 Kết luận: điều này có ý nghĩa là với mức giá P=5 thì khi giá tăng 1% lượng cầu sẽ tăng 1.99% Vd2: Hàm cung và hàm cầu của đĩa vi tính trên địa bàn An Giang lần lượt là: QS=5P + 90, QD=250 – 15P. Tính hệ số co dãn theo giá của cung và cầu tại điểm cân bằng. Giải: Tại thời điểm cân bằng, ta có: QS = QD (5P + 90 = 250 – 15P (20P = 160 (P = 8 Với P = 8, ta có: QS = QD = 130 Hệ số co dãn theo giá của cung và cầu tại thời điểm cân bằng:  B. ỨNG DỤNG ĐẠO HÀM CỦA HÀM NHIỀU BIẾN I. Cơ sở lí thuyết 1. Hàm số hữu dụng của người tiêu dùng. Hữu dụng – U (Utility) : là sự thỏa mãn của một người cảm nhận được khi tiêu dùng một loại sản phẩm hay dịch vụ. Tổng hữu dụng – TU ( Total Utility) : tổng mức thỏa mãn đạt được khi tiêu thụ một số lượng sản phẩm hay dịch vụ trong một đơn vị thời gian. Hữu dụng biên tế - MU (Marginal Utility) : là sự thay đổi trong tổng hữu dụng khi thay đổi một đơn vị sản phẩm tiêu dùng trong mỗi đơn vị thời gian (với điều kiện các yếu tố khác không đổi) Nhớ : Trên đồ thị thì MU chính là độ dốc của đường biểu diễn TU MUx =  ( đạo hàm bậc 1 của TU nếu TU liên tục) MUx =  ( đạo hàm bậc 1 của TU nếu TU liên tục) Với hàm nhiều biến, thì hàm hữu dụng được cho là : U = U (x1, x2,…, xn ) Thì Ui =  : Hữu dụng biên tế của sản phẩm thứ i MUi =  : Biểu diễn mức độ hữu dụng thay đổi khi người tiêu dùng sử dụng thêm một đơn vị sản phẩm thứ i Quy luật dụng ích biên tế giảm dần : Cho : U = f(x1, x2,…, xn ). Trong đó : U : Dụng ích x1, x2,…, xn : các sẩn phẩm dần được mô tả bằng công thức :  Thí dụ: Cho hàm dụng ích của một bé như sau : D = f(t,c) Trong đó: t: Thịt , c: Cá U : là dụng ích
Luận văn liên quan