Ánh sáng có tính lưỡng tính sóng hạt. Tính chất sóng của ánh sáng được quan
sát thấy qua các hiện tượng giao thoa, tán sắc. Ánh sáng có bản chất sóng điện từ.
Các mode trường điện từ là tập các nghiệm của phương trình sóng. Tính chất hạt
của ánh sáng được thể hiện qua khả năng đâm xuyên, hiện tượng quang điện, tác
dụng ion hoá. Ánh sáng bao gồm các photon mang năng lượng xác định bằng hf
trong đó h là hằng số Plank còn f là tần số của ánh sáng.
17 trang |
Chia sẻ: oanh_nt | Lượt xem: 2272 | Lượt tải: 4
Bạn đang xem nội dung tài liệu Đồ án Tán xạ raman có kích thích, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỒ ÁN TỐT NGHIỆP BỘ MÔN THÔNG TIN QUANG
ĐỀ TÀI:
TÁN XẠ RAMAN CÓ KÍCH THÍCH
CHƯƠNG 1: TÁN XẠ RAMAN
1.1 Tổng quan về tán xạ Raman
1.1.1 Ánh sáng
Ánh sáng có tính lưỡng tính sóng hạt. Tính chất sóng của ánh sáng được quan
sát thấy qua các hiện tượng giao thoa, tán sắc. Ánh sáng có bản chất sóng điện từ.
Các mode trường điện từ là tập các nghiệm của phương trình sóng. Tính chất hạt
của ánh sáng được thể hiện qua khả năng đâm xuyên, hiện tượng quang điện, tác
dụng ion hoá. Ánh sáng bao gồm các photon mang năng lượng xác định bằng hf
trong đó h là hằng số Plank còn f là tần số của ánh sáng.
1.1.2 Tương tác của ánh sáng và môi trường
Một chùm sáng đi từ chân không vào môi trường bị phản xạ một phần ở mặt
ngăn cách. Phần khúc xạ vào môi trường lại bị tán sắc, bị môi trường hấp thụ và bị
tán xạ một phần về mọi phía.
Theo Lorentx ta thừa nhận những giả thiết cơ bản sau đây:
Phân tử của mọi chất được tạo thành từ ion và electron. Electron có khối
lượng m và mang điện tích nguyên tố e 1,6.1019 C và được coi như điện
tích điểm.
Bên trong vật dẫn, electron chuyển động hoàn toàn tự do. Chuyển động có
hướng của electron trong vật dẫn dưới ảnh hưởng của điện trường tạo nên
dòng điện dẫn.
Trong điện môi, electron không thể chuyển động tự do. Nhưng cũng không
liên hệ cố kết với ion, mà có thể dịch chuyển một chút dưới tác dụng của
những lực bên ngoài. Ion mang điện tích âm hoặc dương cũng có thể dịch
chuyển dưới tác dụng của điện trường. Nhưng ion có khối lượng lớn hơn
electron nhiều nên di chuyển chậm. Trong điện trường biến đổi nhanh của
sóng ánh sáng trong miền thấy được, ion hầu như không kịp dịch chuyển.
Chỉ khi nào khảo sát trong miền hồng ngoại ta mới cần kể đến ảnh hưởng
của ion.
Những electron có khả năng dao động cưỡng bức với tần số của sóng điện từ
trong vùng quang học gọi là electron quang học. Chúng là các electron lớp ngoài.
Các electron nằm trong lớp sâu, gần hạt nhân nguyên tử, liên hệ chặt chẽ hơn
với hạt nhân. Chúng chỉ có thể dao động với biên độ đáng kể khi tần số nằm vào
vùng Rơngen.
Lực của dao động cưỡng bức do điện từ trường tác dụng lên electron được gọi
là lực Lorentx và bằng :
f1 eE (1.1)
Mặt khác electron vốn chịu một lực chuẩn đàn hồi, ràng buộc nó với hạt nhân
2
f 2 kr m1 r (1.2)
Trong đó k là hằng số chuẩn của lực đàn hồi, xác định tần số dao động riêng
của electron theo hệ thức: 1 k / m , r là độ lệch của electron ra khỏi vị trí cân
bằng. Hằng số lực k phụ thuộc vào điện tích hạt nhân nguyên tử, hoặc cấu trúc
phân tử nên 1 là hoàn toàn đặc trưng cho nguyên tử, phân tử đã cho. Do electron
dao động trở thành lưỡng cực dao động, bức xạ sóng điện từ thứ cấp. Lưỡng cực
dao động cũng có thể va chạm với các phân tử xung quanh, truyền năng lượng dao
động cho chúng. Sự bảo tồn năng lượng dao động vì phát sóng và vì va chạm
tương đương với tác dụng của một lực hãm
,
f 3 gr (1.3)
g là gia tốc của electron khi dao động, kết quả là phương trình chuyển động của
electron có dạng:
2
mr m1 r gr eE (1.4)
Đặt g / m , gọi đó là hệ số tắt dần, ta được phương trình dao động của
electron
2
r r 1 r e.E / m (1.5)
Phương trình (1.5) cùng với các giả thuyết của Lorentx là cơ sở cho việc giải các
bài toán tán sắc và hấp thụ ánh sáng.
1.1.3 Sợi quang
Sợi quang gồm một lõi hình trụ bằng thuỷ tinh có chiết suất n1 , bao quanh lõi là
một lớp vỏ phản xạ đồng tâm với lõi. Lớp vỏ có chiết suất n2 ( n2 < n1).
Sợi quang có thể được phân loại theo nhiều cách khác nhau. Nếu phân loại theo
sự thay đổi chiết suất của lõi sợi thì sợi quang được chia thành hai loại. Loại sợi có
chiết suất đồng đều ở lõi được gọi là sợi quang chiết suất bậc. Loại sợi có chỉ số
chiết suất ở lõi giảm dần từ tâm lõi ra tới lớp tiếp giáp giữa lõi và vỏ phản xạ được
gọi là sợi có chiết suất Gradient (GI-Graded Index). Nếu phân chia theo mode
truyền dẫn thì có loại sợi quang đa mode và sợi đơn mode. Sợi đa mode cho phép
nhiều mode truyền dẫn trong nó còn sợi đơn mode chỉ cho phép một mode truyền
dẫn trong nó.
(a) (b)
(c)
Hình 1.1 Cấu tạo của sợi quang
(a) Sợi quang (b) Sợi chiết suất bậc (c) Sợi chiết suất giảm dần
Một trong các vật liệu được sử dụng rộng rãi để chế tạo sợi quang hiện nay là
silic dioxide SiO2. Mỗi nguyên tử trong thuỷ tinh liên kết với các nguyên tử khác
theo cấu trúc tứ diện như hình 1.2. Trong đó mỗi nguyên tử silic được bao quanh
bởi bốn nguyên tử Oxygen.
Hình 1.2 Cấu trúc tứ diện của Silic dioxide trong thuỷ tinh
Sợi quang cũng có thể được pha tạp với nhiều chất khác nhau để thay đổi chỉ số
chiết suất. Ví dụ GeO2 và P2O5 được pha thêm vào để tăng chiết suất của lõi. Để
giảm chiết suất của lõi, có thể sử dụng các vật liệu như là Boron (B) và Fluorine
(F)…Ngoài ra một số chất khác như Eribium cũng được sử dụng trong các bộ
khuyếch đại quang.
1.1.4 Quá trình truyền ánh sáng trong sợi quang
Suy hao
Vận tốc truyền ánh sáng trong sợi quang nhỏ hơn vận tốc truyền ánh sáng trong
chân không. Ký hiệu c là vận tốc truyền ánh sáng trong chân không, n là chiết suất
của lõi sợi, khi đó vận tốc truyền ánh sáng trong sợi quang được tính theo công
thức (1.6)
c
v , c 3.108 m / s (1.6)
n
Ánh sáng khi truyền dọc theo sợi sẽ bị suy hao. Ký hiệu [1/m] là hệ số suy
hao của sợi quang, P0 là công suất đầu vào sợi quang, công suất đầu ra sợi quang có
chiều dài L được tính theo công thức:
L
PT P0e (1.7)
Để tính toán hệ số suy hao, đơn vị thường được sử dụng là dB dB / km.
Phương trình chuyển đổi đơn vị :
dB
10
ln10
1/ m (1.8)
1000
Công suất quang cũng thường được tính theo đơn vị là dBm thay cho Watt.
Quan hệ giữa hai đơn vị này được biểu thị trong công thức (1.9).
PW
P dBm 10.log (1.9)
10 3
10 W
Tán sắc
Tán sắc là hiện tượng dãn rộng xung ánh sáng khi truyền trong sợi quang. Tán
sắc có nhiều loại như tán sắc mode, tán sắc màu và tán sắc mode phân cực.
Tán sắc mode chỉ xảy ra trong sợi quang đa mode. Do các mode có tốc độ lan
truyền khác nhau nên thời gian truyền các mode là khác nhau, gây ra tán sắc mode.
Tán sắc màu được phân chia thành tán sắc vật liệu và tán sắc ống dẫn sóng. Tán
sắc vật liệu xảy ra do sự phụ thuộc của chiết suất vào bước sóng. Tán sắc ống dẫn
sóng xảy ra do ánh sáng truyền trong sợi không phải là ánh sáng đơn sắc, hằng số
lan truyền là hàm của bước sóng. Các thành phần bước sóng khác nhau có vận
tốc nhóm khác nhau gây ra tán sắc ống dẫn sóng. Tán sắc màu có ảnh hưởng rất
lớn đến hệ thống thông tin quang. Tán sắc màu làm tăng ảnh hưởng của các hiệu
ứng phi tuyến trong sợi quang dẫn đến giới hạn về khoảng cách truyền dẫn trong
hệ thống thông tin quang.
Loại sợi quang phổ biến nhất trên thế giới hiện nay là sợi quang đơn mode tiêu
chuẩn (theo khuyến nghị G.652 của ITU-T) SMF-28 TM có hệ số tán sắc:
S 4 ps
D 0 0
3 , (1.10)
4 nm.km
2
Trong đó D là hệ số tán sắc, là bước sóng, S 0 0.085 ps /(nm .km) là độ dốc
tán sắc không, 0 bước sóng tán sắc không (ZDW). Tán sắc của loại sợi này được
biểu diễn trên Hình 1.3
Hình 1.3 Hệ số tán sắc của sợi quang SMF-28 TM .
Chiều dài hiệu dụng
Khi một tín hiệu truyền dọc theo sợi quang, công suất tín hiệu bị giảm dần do
suy hao. Tuy nhiên, trong thực tế có thể giả sử rằng công suất là hằng số trên một
chiều dài hiệu dụng Leff bởi vì hầu hết các hiệu ứng phi tuyến đều xảy ra ở phía đầu
của sợi. Định nghĩa chiều dài hiệu dụng của sợi quang được thể hiện trên Hình 1.4.
Hình 1.4 (a) Công suất truyền dọc theo sợi có chiều dài L (b) Mô hình tương ứng
của chiều dài hiệu dụng.
Ở hình 1.4 (a) công suất bị suy hao khi truyền dọc theo toàn bộ sợi có chiều dài
L, ở hình 1.4 (b) công suất được coi là không đổi trên một chiều dài sợi:
1 L 1 1 1 eL
L P ez dz / L ez eL 1
eff 0 0 (1.11)
P0 0
Diện tích hiệu dụng
Tất cả các hiệu ứng phi tuyến trong sợi quang đều phụ thuộc vào cường độ ánh
sáng truyền dọc theo sợi. Tuy nhiên trong thực tế các phép đo đều thực hiện đo
công suất đầu vào và đầu ra sợi quang. Công suất đi ra khỏi sợi quang chính là tích
phân của phân bố cường độ ánh sáng trên diện tích mặt cắt của sợi quang. Nếu gọi
Acore là diện tích mặt cắt của sợi quang, Pmeas là công suất đo được ở đầu ra của sợi
quang. Giả thiết cường độ I phân bố đều trên diện tích mặt cắt của sợi. Ta có:
P
I meas (1.12)
Acore
Tuy nhiên trong sợi quang đơn mode, cường độ ánh sáng không phân bố đều
trên toàn bộ diện tích mặt cắt của sợi, cường độ ánh sáng sẽ tăng dần từ lớp tiếp
giáp giữa lõi và vỏ tới trục của sợi. Mức độ tăng phụ thuộc vào chiết suất của sợi.
Do đó để tính toán trong trường hợp này, tham số diện tích hiệu dụng Aeff được
tính theo công thức:
2
2
2 Er rdr
0
Aeff (1.13)
4
Er rdr
0
Với Er là cường độ điện trường của mode cơ bản tại khoảng cách r so với trục
của sợi. Đối với sợi chiết suất bậc diện tích hiệu dụng Aeff có thể được tính theo
công thức:
2
Aeff w (1.14)
Trong đó 2w là đưòng kính trường mode của sợi ở bước sóng .
1.1.5 Tính chất phi tuyến của sợi quang
Trong nguyên tử có các điện tử mang điện tích âm và hạt nhân mang điện tích
dương. Do đó khi điện trường tác động vào vật liệu các điện tử và các hạt nhân bị
dịch chuyển về hai hướng ngược nhau. Lực điện trường làm cho các nguyên tử bị
phân cực, ký hiệu là P, phụ thuộc vào điện trường tác động và bản chất của vật liệu
và được tính như sau:
(1) (2) (3)
P 0 ( .E .EE .EEE ...) (1.15)
( j)
Trong đó 0 là hằng số điện môi trong chân không. là độ điện cảm cấp j.
Độ điện cảm tuyến tính (1) đóng vai trò rất lớn trong P, những ảnh hưởng do nó
đem lại được biểu hiện qua hệ số chiết suất n, hệ số suy hao . Độ điện cảm cấp
hai (2) là nguyên nhân gây ra các hiệu ứng như sinh hoà âm cấp hai. Tuy nhiên với
(2)
các phân tử có cấu trúc đối xứng như SiO2 , gần như bằng 0 nên có thể bỏ qua.
Các độ điện cảm (4) , (5) rất nhỏ so với (3) . Vì vậy chỉ có (3) là nguyên nhân
chủ yếu gây ra các hiệu ứng phi tuyến.
Các hiệu ứng phi tuyến có thể chia thành hai loại. Loại thứ nhất sinh ra do sự
tương tác của sóng ánh sáng với các phonon. Loại này bao gồm hai hiệu ứng quan
trọng là tán xạ Raman kích thích (SRS-Stimulated Raman Scattering) và tán xạ
Brilloin kích thích (SBS-Stimulated Brilloin Scattering). Loại thứ hai gồm các hiệu
ứng phi tuyến Kerr, sinh ra do sự phụ thuộc của chiết suất phi tuyến vào cường độ
điện trường E. Các hiệu ứng phi tuyến Kerr bao gồm: SPM, XPM và FWM.
Hầu hết các hiệu ứng phi tuyến trong sợi quang đều sinh ra do chiết suất phi
tuyến, đó là sự phụ thuộc của cường độ ánh sáng lan truyền trong sợi vào chiết
suất. Mối quan hệ giữa cường độ ánh sáng, chiết suất và công suất P được biểu thị
bằng phương trình:
n
n n n I n 2 .P
0 2 0 (1.16)
Aeff
Trong đó n0 là thành phần phụ thuộc bước sóng của chiết suất n , Aeff là diện
tích hiệu dụng của sợi quang, n2 được gọi là chỉ số chiết suất phi tuyến. Tỉ số
n2 / Aeff được gọi là hệ số phi tuyến. Tham số này có thể đo được mà không cần biết
diện tích hiệu dụng của sợi quang.
Ngoài ra khi nghiên cứu các hiệu ứng phi tuyến trong sợi quang một tham số
nữa cũng được đưa ra là gọi là tham số phi tuyến (nonlinear parameter) và quan
hệ với chiết suất phi tuyến n2 theo công thức:
n 2 n
0 2 = 2 (1.17)
cAeff Aeff
0 là tần số góc của ánh sáng, c là vận tốc ánh sáng trong chân không, là
bước sóng ánh sáng, Aeff là diện tích hiệu dụng của sợi.
20 2 (3)
Chỉ số chiết suất phi tuyến n2 ( n2 2.2 3.410 m /W ) liên quan với như
sau:
3
n Re (3) (1.18)
2 8n
Với Re (3) là phần thực của (3) .
Ngoài ra đặc tính của các hiệu ứng phi tuyến trong sợi quang còn chịu ảnh
hưởng của nhiều tham số như cường độ của tín hiệu, chiều dài sợi, khoảng cách
giữa các kênh (trong hệ thống WDM).
1.1.6 Tán xạ ánh sáng
Khi ánh sáng truyền qua môi trường vật chất trong suốt thì phần lớn ánh sáng
truyền thẳng và một phần nhỏ sẽ bị tán xạ. Môi trường có thể gây ra nhiều loại tán
xạ trong đó điển hình là tán xạ Rayleigh, tán xạ Brillouin, tán xạ Raman… Tuỳ
thuộc vào loại vật chất, ánh sáng, điều kiện môi trường… mà mỗi loại tán xạ xảy ra
khác nhau.
Tán xạ Rayleigh là quá trình tán xạ đàn hồi, tần số ánh sáng tán xạ bằng tần số
ánh sáng tới. Trạng thái của các phân tử vật chất do tán xạ Rayleigh không thay đổi
sau khi ánh sáng truyền qua. Ngược lại, tán xạ Brillouin và tán xạ Ramman là các
quá trình tán xạ không đàn hồi, các nguyên tử bị kích thích khi có ánh sáng đi qua
và tần số ánh sáng tán xạ bị dịch chuyển so với tần số của ánh sáng tới.
a-Quá trình tán xạ đàn hồi b-Quá trình tán xạ không đàn hồi.
Hình 1.5 Quá trình tán xạ ánh sáng
Quá trình tán xạ không đàn hồi có sự tham gia của các phonon. Trong quá trình
này các phonon có thể sinh ra hoặc bị hấp thụ. Mức thay đổi tần số của ánh sáng
tán xạ so với ánh sáng tới bằng với tần số của phonon. Tán xạ Brilloin liên quan
đến các phonon âm học còn tán xạ Raman liên quan đến các phonon quang học.
Do đó ánh sáng tán xạ Raman có mức dịch chuyển tần số lớn hơn ánh sáng tán xạ
Brilloin. Nếu ánh sáng tán xạ có tần số nhỏ hơn ánh sáng tới thì ánh sáng tán xạ
được gọi là ánh sáng Stoke và quá trình tán xạ được gọi là tán xạ Stoke. Ngược lại,
nếu ánh sáng tán xạ có tần số lớn hơn ánh sáng tới thì ánh sáng tán xạ được gọi là
ánh sáng phản Stoke và quá trình tán xạ được gọi là tán xạ phản Stoke. Với tán xạ
không đàn hồi, đơn vị đo độ dịch tần của ánh sáng tán xạ là (rad/s) hoặc là cm 1
với v ( v là dịch chuyển tần số theo cm 1 , là dịch chuyển tần số theo rad/s
2c
và c là vận tốc của ánh sáng trong chân không theo cm/s).
Các hiệu ứng tán xạ sẽ làm giới hạn công suất quang lớn nhất có thể truyền ở
trong sợi. Trong hệ thống WDM tán xạ là nguyên nhân gây nhiễu giữa các kênh.
Tuy nhiên tán xạ Raman cũng được ứng dụng trong các bộ khuyếch đại quang
Raman ở những bước sóng mà bộ khuyếch đại quang EDFA không phù hợp. Hiệu
ứng tán xạ Brilloin là nguyên lý trong các bộ cảm ứng đo nhiệt độ môi trường tại
những nơi mà bộ cảm ứng điện không phù hợp.
Tần số
Hình 1.6 Tần số của ánh sáng tán xạ.
1.1.7 Tán xạ Raman
Tán xạ Raman được phân chia thành hai loại: Tán xạ Raman tự phát
(Spontaneous Raman Scattering) và tán xạ Raman kích thích (Stimulated Raman
Scattering). Hiệu ứng tán xạ Raman tự phát đã được dự đoán bởi Smekal vào năm
1923 và đến năm 1928 được Raman chỉ ra bằng thực nghiệm.
Trong quá trình tán xạ Raman tự phát, ánh sáng tới tương tác với môi trường
làm sinh ra các photon. Tuỳ thuộc vào bản chất của môi trường các photon sinh ra
sẽ có tần số lớn hơn hoặc nhỏ hơn tần số của ánh sáng tới.
Giản đồ năng lượng của quá trình tán xạ Raman được thể hiện trên Hình 1.7.
Electron sẽ chuyển từ trạng thái khởi đầu (trạng thái cơ bản) lên trạng thái ảo
(trạng thái kích thích) khi hấp thụ một photon có năng lượng bằng hiệu năng lượng
giữa trạng thái ảo và trạng thái khởi đầu. Khi chuyển từ trạng thái ảo về trạng thái
cuối electron sẽ phát xạ một photon có năng lượng bằng hiệu năng lượng trạng thái
ảo và trạng thái cuối.
Nếu như trạng thái khởi đầu có năng lượng thấp hơn năng lượng của trạng thái
cuối, tần số photon phát xạ sẽ nhỏ hơn tần số ánh sáng tới và quá trình tán xạ tạo ra
ánh sáng Stoke.
Hình 1.7 Giản đồ năng lượng quá trình tán xạ Raman.
(a)Tán xạ Stoke (b)Tán xạ phản Stoke.
Giả sử 1,2 lần lượt là tần số của ánh sáng tới và ánh sáng tán xạ, là tần số
phonon được sinh ra. Khi đó theo định luật bảo toàn chuyển hoá năng lượng thì 2
1- .
Ngược lại nếu trạng thái cuối có năng lượng thấp hơn thì quá trình tán xạ tạo ra
ánh sáng phản Stoke có tần số 2 1 , chêch lệch giữa mức năng lượng trạng
thái khởi đầu và trạng thái cuối chính là năng lượng của một phonon. Thực tế, tán
xạ phản Stoke thường yếu hơn tán xạ Stoke.
Tần số của các photon tán xạ được xác định bằng tần số dao động của nguyên
tử. Với thuỷ tinh, quang phổ của ánh sáng tán xạ Raman gồm nhiều thành phần tần
số khác nhau là do các nguyên tử trong thuỷ tinh dao động trong một khoảng tần số
rất rộng.
Hiệu ứng tán xạ Raman tự phát được ứng dụng để xác định cấu trúc của các
phân tử, thành phần cấu tạo và loại liên kết trong các phân tử đó.
Khi ta tăng dần công suất bơm đầu vào thì công suất của sóng Stoke cũng tăng
dần. Nhưng nếu như công suất sóng bơm vượt quá một giá trị xác định thì công
suất sóng Stoke sẽ tăng lên rất nhanh theo hàm mũ. Nguyên nhân gây ra hiện tượng
này là quá trình tán xạ Raman kích thích.
1.2 Đặc tính của tán xạ Raman kích thích
1.2.1 Phổ khuếch đại Raman
Hình 1.8 Phổ khuyếch đại Raman của sợi Silic ở bước sóng bơm p 1m .
Sự gia tăng của cường độ sóng Stoke được mô tả bởi công thức:
dIs
=g I I (1.19)
dz R P S
Trong đó I S là cường độ sóng Stoke, I P là cường độ sóng bơm và g R là hệ số
khuyếch đại Raman. Hệ số khuếch đại Raman liên quan đến mặt cắt chiết suất của
tán xạ tự phát Raman và có thể đo lường được bằng thực nghiệm. Ở mức độ cơ bản
(3)
g R liên quan đến phần ảo của độ điện cảm phi tuyến cấp 3 .
Thông thường g phụ thuộc vào thành phần lõi sợi quang và có thể thay đổi rất
R
lớn nếu pha thêm tạp chất vào lõi sợi. Hình 1.8 biểu diễn g R của sợi silic theo độ
dịch tần ở bước sóng bơm p =1 m. Nếu bước sóng bơm khác 1 m, có thể tính
được g R bằng cách lấy nghịch đảo sự phụ thuộc của g R vào p .
Điểm đáng chú ý nhất trong phổ khuyếch đại Raman của sợi silic là g R kéo dài
trong một phạm vi tần số rất rộng (đạt tới 40 THz) với đỉnh khuyếch đại gần độ
dịch tần 13THz. Điều này xảy ra là do tính phi tinh thể tự nhiên của thuỷ tinh silic.
Trong các vật liệu vô định hình như silic tần số dao động phân tử trải rộng thành
nhiều dải chồng chéo lên nhau và trở thành một dải liên tục. Kết quả là khác hẳn
với các phương tiện truyền dẫn trước đây (có phổ khuyếch đại Raman nằm trong
một dải tần số hẹp), phổ khuyếch đại Raman của sợi silic liên tục và trải dài trong
một phạm vi rất rộng. Chính vì đặc điểm này mà sợi quang có thể làm việc như
một bộ khuyếch đại dải rộng.
Để hiểu quá trình SRS xảy ra như thế nào, ta xét một chùm sóng bơm liên tục
lan truyền bên trong sợi ở tần số p . Nếu tần số của chùm dò ở tần số s được đưa
vào đầu sợi quang cùng với sóng bơm, nó sẽ được khuyếch đại bởi khuyếch đại
Raman với điều kiện độ lệch tần p -s nằm bên trong phổ khuyếch đại Raman
như trên hình 1.8. Nếu chỉ có một mình sóng bơm được đưa vào đầu sợi quang, tán
xạ tự phát Raman sẽ sinh ra một tín hiệu yếu hoạt động như là sóng dò và được
khuyếch đại trong quá trình truyền dẫn. Bởi vì các tín hiệu sinh ra do tán xạ tự phát
Raman nằm trong miền phổ khuyếch đại Raman nên chúng được khuyếch đại. Tuy
nhiên tần số nào có độ dịch tần (dịch từ tần số bơm) ứng với giá trị lớn nhất của g R
sẽ được khuyếch đại nhanh nhất. Trong trường hợp sợi silic là tinh khiết, g R đạt
giá trị lớn nhất đối với độ dịch tần giảm xuống cỡ 13.2 THz (440 cm 1 ). Nếu như
công suất bơm vượt quá một giá trị ngưỡng, thành phần tần số này được khuyếch
đại có dạng quy luật hàm mũ. Chính vì vậy thành phần tần số Stoke được sinh ra
do SRS phụ thuộc giá trị đỉnh trong phổ khuyếch đại Raman. Độ dịch tần giữa
sóng bơm và sóng Stoke trong trường hợp này được gọi là dịch chuyển Raman hay
dịch chuyển Stoke.
1.2.2 Ngưỡng Raman
Để tìm được ngưỡng Raman, ta quan tâm đến sự tương tác giữa sóng Stoke và
sóng bơm. Trong trường hợp sóng là liên tục, sự tương tác này được khống chế bởi
cặp phương trình s