Đồ án Ứng dụng công nghệ MBBR trong xử lý nước thải sinh hoạt

Quá trình công nghiệp hóa, hiện đại hóa đất nước tạo nên một sức ép lớn đối với môi trường. Trong sự phát triển kinh tế xã hội, tốc độ đô thị hóa ngày càng gia tăng. Mức độ ô nhiễm nguồn nước mặt và nước ngầm đang ngày càng trầm trọng. Do đó việc xây dựng, vận hành các hệ thống xử lý nước thải cho các đô thị hiện nay là hết sức cần thiết. Đề bài: Ứng dụng công nghệ MBBR (Moving Bed Biofilm Reactor) trong xử lý nước thải sinh hoạt đô thị. - Lưu lượng q = 2000 m3/ngày đêm. - Yêu cầu xử lý: QCVN 14:2008/BTNMT, cột A

docx62 trang | Chia sẻ: ngtr9097 | Lượt xem: 4472 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Đồ án Ứng dụng công nghệ MBBR trong xử lý nước thải sinh hoạt, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC MỞ ĐẦU Quá trình công nghiệp hóa, hiện đại hóa đất nước tạo nên một sức ép lớn đối với môi trường. Trong sự phát triển kinh tế xã hội, tốc độ đô thị hóa ngày càng gia tăng. Mức độ ô nhiễm nguồn nước mặt và nước ngầm đang ngày càng trầm trọng. Do đó việc xây dựng, vận hành các hệ thống xử lý nước thải cho các đô thị hiện nay là hết sức cần thiết. Đề bài: Ứng dụng công nghệ MBBR (Moving Bed Biofilm Reactor) trong xử lý nước thải sinh hoạt đô thị. - Lưu lượng q = 2000 m3/ngày đêm. - Yêu cầu xử lý: QCVN 14:2008/BTNMT, cột A Chương I: TỔNG QUAN VỀ NƯỚC THẢI SINH HOẠT ĐÔ THỊ I.1. Giới thiệu chung: Con người trong các hoạt động kinh tế xã hội đã sử dụng một lượng nước rất lớn. Nước cấp sau khi sử dụng vào mục đích sinh hoạt, sản xuất, nước mưa chảy tràn trên các mái nhà, mặt đường, sân vườn,…Bị nhiểm bẩn chứa nhiều hợp chất bẩn gây ô nhiễm môi trường. Nước thải sinh hoạt là nước thải được bỏ đi sau khi sử dụng cho các mục đích sinh hoạt của con người. Một số các hoạt động dịch vụ hoặc công cộng như bệnh viện, trường học, nhà ăn cũng tạo ra các loại nước thải có thành phần và tính chất tương tự như nước thải sinh hoạt. Nước thải sinh hoạt là hỗn hợp phức tạp thành phần các chất, trong đó chất bẩn thuộc nguồn gốc hữu cơ thường tồn tại dưới dạng không hòa tan, dạng keo và dạng hòa tan dễ bị phân hủy thối rữa, chứa nhiều vi trùng gây bệnh và truyền bệnh nguy hiểm. Thành phần và tính chất của chất bẩn phụ thuộc vào mức độ hoàn thiện của thiết bị, trạng thái làm việc của hệ thống mạng lưới vận chuyển, tập quán sinh hoạt của người dân, mức sống xã hội, điều kiện tự nhiên…Do tính chất hoạt động của đô thị mà chất bản của nước thải thay đổi theo thời gian và không gian. I.1.1. Đặc điểm vật lý: Theo trạng thái vật lý, các chất bẩn trong nước thải được chia thành: - Các chất không hòa tan ở dạng lơ lửng kích thước lớn hơn 10-4 mm, có thể ở dạng huyền phù, nhũ tương hoặc dạng sợi, giấy, vải, cây cỏ… - Các tạp chất bẩn dạng keo với kích thước hạt khoảng 10-4 - 10-6 mm. - Các chất bẩn dạng tan có kích thước nhỏ hơn 10-6 mm, có thể ở dạng phân tử hoặc phân ly thành ion. - Nước thải sinh hoạt thường có mùi hôi thối khó chịu do khi vận chuyển trong cống sau 2 đến 6 giờ xuất hiện khí hydro sunfua. I.1.2. Đặc điểm hóa học: Nước thải chứa các hợp chất hóa học dạng vô cơ như sắt, magiê, canxi, silic, nhiều chất hữu cơ sinh hoạt như phân, nước tiểu và các chất thải khác như cát, sét, dầu mỡ. Nước thải vừa xả ra có tính kiềm, nhưng dần trở nên có tính axit vì thối rữa. Các chất hữu cơ có thể xuất xứ từ thực vật hoặc động vật. Những chất hữu cơ trong nước thải có thể chia thành các chất chứa nitơ và các chất chứa cacbon. Các hợp chất chứa nitơ chủ yếu như urê, prôtêin, amin và axit amin. Các hợp chất chứa cacbon như mỡ, xà phòng, hydrocacbon… I.1.3. Đặc điểm sinh vật, vi sinh vật: Nước thải sinh hoạt chứa rất nhiều sinh vật chủ yếu là vi sinh với số lượng từ 105 đến 106 tế bào trong 1ml. Nguồn chủ yếu đưa vi sinh vật vào nước thải là phân, nước tiểu và đất cát. Tế bào vi sinh vật hình thành từ chất hữu cơ, nên tập hợp vi sinh có thể coi là một phần của tổng hợp chất hữu cơ trong nước thải. Phần này sống, hoạt động, tăng trưởng để phân hủy phần hữu cơ còn lại của nước thải. Vi sinh trong nước thải thường được phân biệt theo hình dạng. Vi sinh xử lý nước thải có thể chia thành 3 nhóm: Vi khuản, nấm, động vật nguyên sinh (Protozoa). Vi khuẩn đóng vai trò quan trọng đầu tiên trong việc phân hủy chất hữu cơ, nó là cơ thể sống đơn bào, có khả năng phát triển và tăng trưởng trong các bông cặn lơ lửng hoặc dính bám vào bề mặt vật cứng. Vi khuẩn có khả năng sinh sản rất nhanh, khi tiếp xúc với chất dinh dưỡng có trong nước thải, chúng hấp thụ nhanh thức ăn qua màng tế bào. Đa số vi khuẩn đóng vai trò quan trọng trong việc phân hủy chất hữu cơ, biến chất hữu cơ thành chất ổn định tạo thành bông cặn dễ lắng, nhưng thường củng có loại vi khuẩn dạng lông tơ (filamentous) kết với nhau thành lưới nhẹ nổi lên bề mặt làm ngăn cản quá trình lắng. Vi khuẩn dạng nấm (Fungi bacteria) có kích thước lớn hơn vi khuẩn và không có vai trò trong quá trình phân hủy ban đầu của chất hữu cơ trong quá trình xử lý nước thải. Vi khuẩn dạng nấm phát triển thường kết thành lưới nổi trên mặt nước gây cản trở dòng chảy và quá trình thủy động học. Động vật nguyên sinh đặc trưng bằng một vài giai đoạn hoạt động trong quá trình sống của nó. Thức ăn chính của động vật nguyên sinh là vi khuẩn, cho nên chúng là chất chỉ thị quan trọng thể hiện hiệu quả xử lý của các công trình xử lý sinh học nước thải. I.2. Các thông số đặc trưng của nước thải sinh hoạt: Đặc trưng của nước thải sinh hoạt là thường chứa nhiều tạp chất khác nhau, trong đó khoảng 52% là các chất hữu cơ, 48% là các chất vô cơ và một số lớn vi sinh vật. Phần lớn các vi sinh vật trong nước thải ở dạng các virut và vi khuẩn gây bệnh như tả, lỵ, thương hàn,… Đồng thời trong nước thải cũng chứa các vi khuẩn không có hại có tác dụng phân hủy các chất thải. I.2.1. Hàm lượng chất rắn: Tổng chất rắn là thành phần đặc trưng nhất của nước thải, nó bao gồm các chất rắn không tan lơ lửng (SS), chất keo và hòa tan. Xác định hàm lượng chất rắn bằng cách cho bay hơi một lượng nước thải trên bếp cách thủy và sấy khô ở nhiệt độ 105 oC cho tới khi trọng lượng không đổi, sau đó đem cân và so sánh với khối lượng nước ban đầu, đơn vị là mg/l. Chất rắn lơ lửng có kich thước hạt ≥ 10-4 mm có thể lắng được và không lắng được (dạng keo). Nó được xác định bằng cách cho nước thải thấm qua giấy lọc tiêu chuẩn với kích thước lỗ khoảng 1,2 µm. Gạn lấy lượng cặn đọng lại trên giấy thấm đem sấy ở nhiệt độ 105oC cho đến khi trọng lượng không thay đổi, đơn vị mg/l. I.2.2. Nhu cầu ôxy sinh hóa (BOD) và hóa học (COD): Mức độ nhiễm bẩn nước thải bởi chất hữu cơ có thể xác định theo lượng ôxy cần thiết để ôxy hóa chất hữu cơ dưới tác động của vi sinh vật hiếu khí và được gọi là nhu cầu ôxy cho quá trình sinh hóa. Nhu cầu ôxy sinh hóa là chỉ tiêu rất quan trọng và tiện dùng để chỉ mức độ nhiễm bẩn của của nước thải bởi các chất hữu cơ. Trị số BOD đo được cho phép tính toán lượng ôxy hòa tan cần thiết để cấp cho các phản ứng sinh hóa của vi khuẩn diễn ra trong quá trình phân hủy hiếu khí các chất hữu cơ có trong nước thải. Nhu cầu ôxy hóa học COD: Là lượng ôxy cần thiết để ôxy hóa hoàn toàn chất hữu cơ và một phần nhỏ các chất vô cơ dễ bị ôxy hóa có trong nước thải. Chỉ tiêu nhu cầu ôxy sinh hóa BOD không đủ để phản ánh khả năng ôxy hóa các chất hữu cơ khó bị ôxy hóa và các chất vô cơ có thể bị ôxy hóa có trong nước thải. Việc xác định COD có thể tiến hành bằng cách cho chất ôxy hóa mạnh vào mẫu thử nước thải trong môi trường axít. Trị số COD luôn lớn hơn trị số BOD5 và tỷ số COD : BOD càng nhỏ thì xử lý sinh học càng dễ. I.2.3. Ôxy hòa tan: Nồng độ ôxy hòa tan trong nước thải trước và sau xử lý là chỉ tiêu rất quan trọng. Trong quá trình xử lý hiếu khí luôn phải giữ nồng độ ôxy hòa tan trong nước thải từ 1,5 – 2 mg/l để quá trình ôxy hóa diễn ra theo ý muốn và để hỗn hợp không rơi vào tình trạng yếm khí. Ôxy là khí có độ hòa tan thấp và nồng độ ôxy hòa tan phụ thuộc vào nhiệt độ, nồng độ muối có trong nước. Trong quá trình xử lý nước thải, vi sinh vật tiêu thụ ôxy hòa tan để đồng hóa các chất dinh dưỡng và chất nền BOD, N, P cần thiết cho việc duy trì sự sống, tăng trưởng và sinh sản của chúng. I.2.4. Trị số pH: Trị số pH cho biết nước thải có tính trung hòa, tính axit hay tính kiềm. Quá trình xử lý nước thải bằng phương pháp sinh họa rất nhạy cảm với sự dao động của trị số pH. Quá trình xử lý hiếu khí đòi hỏi giá trị pH trong khoảng 6,5 đến 8,5. I.2.5. Các hợp chất của Nitơ và Photpho trong nước thải: a.Các hợp chất của nitơ trong nước thải: Nước thái sinh hoạt luôn có một số hợp chất chứa nitơ. Nitơ là chất dinh dưỡng quan trọng trong quá trình phát triển của vi sinh vật trong các công trình xử lý sinh học. Các hợp chất chứa nitơ là protein, các sản phẩm phân hủy của nó như amino aixit là nguồn thức ăn hữu cơ của vi khuẩn, và các hợp chất hữu cơ chứa nitơ có trong nước thải bắt nguồn từ phân và nước tiểu (urê) của người và động vật. Urê bị phân hủy ngay khi có tác dụng của vi khuẩn thành amoni (NH4+) và NH3 là hợp chất vô cơ chứa nitơ có trong mước thải. Hai dạng hợp chất vô cơ chứa Nitơ có trong nước thải là nitrit và nitrat. Nitrat là sản phẩm ôxy hóa của amoni (NH4+) khi tồn tại oxy, thường gọi quá trình này là quá trình Nitrat hóa. Còn nitrit (NO2-) là sảm phẩm trung gian của quá trình nitrat hóa, nitrit là hợp chất không bền vững dễ bị ôxy hóa thành nitrat (NO3-). Vì amoni sử dụng ôxy trong quá trình Nitrat hóa và các vi sinh vật trong nước, rong, tảo dùng nitrat làm thức ăn để phát triển, cho nên nếu hàm lượng nitơ có trong nước thải xả ra sông, hồ quá mức cho phép sẽ gây ra hiện tượng phú dưỡng kích thích sự phát triển nhanh của rong, tảo làm bẩn nguồn nước. b.Các hợp chất photpho trong nước thải: Photpho cũng giống như nitơ, là chất dinh dưỡng cho vi khuẩn sống và phát triển trong các công trình xử lý nước thải. Photpho là chất dinh dưỡng đầu tiên cần thiết cho sự phát triển của thảo mộc sống dưới nước, nếu nồng độ photpho trong nước thải xả ra sông, suối quá mức cho phép sẽ gây ra hiện tượng phú dưỡng. Photpho thường ở dạng photphat vô cơ và bắt nguồn từ chất thải là phân, nước tiểu, phân bón dùng trong nông nghiệp và từ các chất tẩy rửa dùng trong sinh hoạt hằng ngày. I.2.6. Các hợp chất vô cơ khác trong nước thải: Có rất nhiều hợp chất vô cơ trong nước thải. Để đánh giá tính chất nhiểm bẩn của nước thải bởi khoáng vật người ta dùng các chỉ tiêu về hàm lượng sulfat và clorua. Trong nước thải đô thị hàm lượng sulfat vào khoảng 100 đến 150 mg/l, còn hàm lượng clorua từ 150 đến 250 mg/l. Hàm lượng sulfat và clorua thường không hoặc ít thay đổi trước và sau xử lý và cũng không làm ảnh hưởng tới các quá trình lí hóa, sinh hóa nước thải và cặn bã. I.2.7. Vi sinh vật: Nước thải sinh hoạt chứa rất nhiều các vi sinh vật với số lượng từ 105 – 106 tế bào/1ml. Phần lớn vi sinh có trong nước thải không phải là vi khuẩn gây bênh, có thể có một số ít vi khuẩn gây bệnh như thương hàn, tả, lỵ, vi trùng gan. * Các thông số cụ thể của đồ án: Lưu lượng Q = 1500m3/ngày đêm. TT Thông số Ký hiệu Đơn vị Giá trị 1 Tổng chất rắn TS mg/l 700 2 Hàm lượng chất rắn lơ lửng SS mg/l 200 3 Nhu cầu ôxy hóa học COD mg/l 500 4 Nhu cầu ôxy sinh hóa BOD5 mg/l 300 5 Tổng Ni tơ ∑N mg/l 40 6 Tổng Photpho ∑P mg/l 8 7 pH (25oC) 6,8 8 Dầu mỡ động, thực vật mg/l 100 8 Coliform MPN/100ml 107 I.3. Các công đoạn xử lý: I.3.1. Tiền xử lý: Giai đoạn tiền xử lý gồm các công trình và thiết bị có nhiệm vụ loại ra khỏi nước thải các vật có thể gây tắt nghẽn đường ống làm hư hại máy bơm và làm giảm hiệu quả xử lý của giai đoạn sau, cụ thể như: Loại bỏ hoặc cắt nhỏ những vật nổi lơ lửng có kích thước lớn có trong nước thải như gỗ, nhựa, giấy, vỏ hoa quả,… Loại bỏ cặn nặng như cát sỏi, kim loại, thủy tinh,… Loại bỏ một phần dầu mỡ. Các thiết bị thường dùng là: - Song chắn rác, lưới chắn rác; - Máy nghiền cắt vụn rác; - Bể lắng cát; - Bể điều hòa lưu lượng. I.3.2. Xử lý sơ bộ: Chủ yếu là quá trình lắng để loại bỏ bớt cặn lơ lửng. Có nhiều loại bể lắng, kết quả xử lý của công đoạn xử lý sơ bộ là loại bỏ được một phần cặn lơ lửng và các chất nổi như dầu, mỡ, bọt,… đồng thời phân hủy yếm khí cặn lắng ở phần dưới của các công trình ổn định cặn. a. Bể lắng cát: Bể lắng cát đặt sau song chắn và đặt trước bể điều hòa lưu lượng và chất lượng, trước bể lắng đợt một. Nhiệm vụ của bể lắng cát là loại bỏ cặn thô, nặng như cát, sỏi, mảnh vỡ thủy tinh, mảnh kim loại, tro tàn, than vụn, vỏ trứng,… để bảo vệ các thiết bị cơ khí dễ bị mài mòn. Theo đặc tính của dòng chảy có thể phân loại bể lắng cát: Bể lắng cát ngang, bể lắng cát thổi khí, bể lắng cát ly tâm. b. Bể điều hòa lưu lượng và chất lượng: Lưu lượng và chất lượng nước thải từ hệ thống cống thu gom chảy về nhà máy xử lý thường xuyên dao động theo các ngày giờ, có 2 loại bể điều hòa: Bể điều hòa lưu lượng và chất lượng nằm trực tiếp trên đường chuyển động của dòng chảy; Bể điều hòa lưu lượng là chủ yếu, có thể nằm trực tiếp trên đường vận chuyển hoặc nằm ngoài đường đi của dòng chảy. Tùy theo điều kiên đất đai và chất lượng nước thải, khi mạng cống thu gom là mang cống chung thường áp dụng bể điều hòa lư lượng để tích trữ được lượng nước sau cơn mưa. Ở các mạng thu gom là hệ thống cống riêng và ở những nơi có chất lượng nước thải thay đổi thường áp dụng bể điều hòa cả lưu lượng và chất lượng. Điều chỉnh pH và bổ sung chất dinh dưỡng N,P: Nước thải trước khi đi vào các công trình xử lý sinh học phải có trị số pH nằm trong khoảng 6,5 – 8,5 và tỷ lệ các chất dinh dưỡng C:N:P trong khoảng 100:5:1. c. Bể lắng đợt I: Có nhiệm vụ lắng các hạt rắn nhỏ hơn 0,2 mm, bể lắng đợt một có nhiều loại khác nhau. Bùn lắng được tách ra khỏi nước ngay sau khi lắng, có thể bằng phương pháp thủ công hay cơ giới. Quá trình lắng chịu ảnh hưởng của các yếu tố sau: Lưu lượng nước thải, thời gian lắng (hay thời gian lưu), khối lượng riêng và tải lượng tính theo chất rắn lơ lửng, tải lượng thủy lực, sự keo tụ các hạt rắn, vận tốc dòng chảy trong bể, sự nén bùn đặc, nhiệt độ của nước thải và kích thước bể lắng. I.3.3. Xử lý bậc II: Là công đoạn phân hủy sinh học hiếu khí các hợp chất hữu cơ. Mục đích cơ bản của quá trình xử lý sinh học là lợi dụng các hoạt động sống và sinh sản của vi sinh vật để ổn định các hợp chất hữu cơ, làm keo tụ các chất keo lơ lửng không lắng được trong nước thải sinh hoạt để loại chúng ra khỏi nước. Xử lý sinh học gồm các bước: - Chuyển hóa các hợp chất hữu cơ có nguồn gốc cacbon ở dạng keo và dạng hòa tan thành thể khí và thành vỏ các tế bào vi sinh. - Tạo ra các bông cặn sinh học gồm các tế bào vi sinh vật và các chất keo vô cơ trong nước thải. - Loại các bông cặn sinh học ra khỏi nước bằng quá trình lắng trọng lực. I.3.3.1.Một số công nghệ xử lý sinh học hiếu khí được sử dụng trong xử lý nước thải đô thị: a. Bể Aerotank truyền thống: Bể Aerotank Bể lắng đợt 2 Tuần hoàn bùn hoạt tính Nước thải vào Bùn Bùn Nước ra Bể lắng đợt 1 Sơ đồ Nước thải sau bể lắng đợt 1 được trộn đều với bùn hoạt tính tuần hoàn ở ngay đầu bể Aerotank. Đối với nước thải sinh hoạt có mức độ nhiễm bẩn trung bình, lưu lượng tuần hoàn thường từ 20 – 30% lưu lượng nước thải đi vào. Dung tích bể được thiết kế với thời gian lưu nước để làm thoáng trong bể từ 6 đến 8 giờ khi dùng hệ thống sục khí và từ 9 đến 12 giờ khi dùng thiết bị khuấy làm thoáng bề mặt. Các thông số của bể: - Lượng khí cấp vào từ 55 – 65 m3/1kgBOD5 cần khử. - Chỉ số thể tích bùn SVI từ 50 – 150 ml/g. - Nồng độ bùn hoạt tính trong bể aerotenk: 1500 – 3000 mg/l. - Tuổi của bùn θ từ 3 – 15 ngày. - Nồng độ BOD đầu vào < 400 mg/l, hiệu quả làm sạch từ 80 – 95 %. b. Bể Aerotank hoạt động gián đoạn theo mẻ (SBR – Sequencing Batch Reactor): Là một dạng xử lý sinh học nước thải bằng bùn hoạt tính. Do hoạt động gián đoạn nên số ngăn tối thiểu của bể là 2. Bể lắng đợt 1 Bể SBR 1 Bể SBR 2 Khử trùng Xả bùn Nguồn tiếp nhận Sơ đồ: Đặc điểm: - BOD của nước thải sau xử lý thường < 20 mg/l. - Hàm lượng cặn lơ lửng 3 – 25 mg/l và N-NH3 từ 0,3 – 12 mg/l. - Bể SBR làm việc không cần bể lắng đợt 2. Bể SBR có ưu điểm là cấu tạo đơn giản, hiệu quả xử lý cao, khử được các chất dinh dưỡng nitơ, dễ vận hành. Sự dao động lưu lượng nước thải ít ảnh hưởng đến hiệu quả xử lý. Nhược điểm chính của bể là công suất xử lý nhỏ, để hoạt động có hiệu quả phải thường xuyên kiểm tra theo dõi các bước xử lý nước thải. c. Đĩa lọc sinh học: Đĩa lọc sinh học được dùng để xử lý nước thải bằng phương pháp sinh học theo nguyên lý dính bám. Đĩa lọc là các tấm nhựa, gỗ,… hình tròn đường kính 2 đến 4m, dày dưới 10mm ghép với nhau thành khối cách nhau 30 đến 40mm và các khối này được bố trí thành dãy nối tiếp quay đều trong bể chứa nước thải. Tốc độ quay của đĩa từ 1 đến 2 vòng/phút và đảm bảo dòng chảy rối, không cho bùn cặn lắng lại trong bể nước thải. Trong quá trình quay, phần dưới của đĩa ngập trong nước thải. Quá trình hấp phụ và dính bám các chất hữu cơ dạng hòa tan, keo và vẫy bùn lên màng sinh vật hình thành trước đó được diễn ra. Khi quay lên phía trên, vi khuẩn sẽ lấy ôxy để ôxy hóa chất hữu cơ và giải phóng CO2. Màng sinh vật dày 2 đến 4mm, phụ thuộc vào vận tốc quay của đĩa. Bùn cặn màng sinh vật được lắng lại trong bể lắng đợt 2. d.Công nghệ MBBR – Moving Bed Biofilm Reactor: * Giới thiệu: MBBR là quá trình kết hợp giữa hai quá trình màng sinh học và quá trình bùn hoạt tính. Trong đó, vi sinh vật phát triển trên bề mặt các hạt nhựa polyetylen (đệm) lơ lửng trộn lẫn với nước thải trong bể phản ứng. Không khí cấp vào bể vừa để cung cấp ôxy cho vi sinh vật sử dụng vừa là động lực cho các đệm chuyển động trong bể (các đệm plastic nhẹ, có khối lượng riêng xấp xỉ khối lượng riêng của nước). Nước được xử lý từ bể phản ứng sẽ chảy qua một lưới lọc trước khi vào bể lắng bậc II, mục đích của lưới lọc là giữ lại các đệm plastic trong bể phản ứng. Công nghệ MBBR có khả năng xử lý hiệu quả rất cao đối với các nước thải có mức độ ô nhiễm hữu cơ và nitơ cao. * Hoạt động: Trong quá trình xử lý nước thải, quần xã các vi sinh vật phát triển trên bề mặt các đệm plastic. Hầu hết các vi sinh vật trên lớp màng là vi sinh vật dị dưỡng (chúng sử sụng cacbon hữu cơ để tạo sinh khối) với ưu thế hơn là các vi khuẩn tùy tiện. Các vi khuẩn tùy tiện này có thể sử dụng ôxy hòa tan trong nước, hoặc khi lượng ôxy hòa tan không đủ chúng sẽ sử dụng nitrate, nitrite. Tại bề mặt của lớp màng sinh học đọng lại các chất lỏng phân biệt rõ ràng do sự di chuyển lẫn lộn trong bể phản ứng. Chất dinh dưỡng và ôxy khuếch tán qua lớp chất lỏng đến bề mặt của màng sinh học. Trong khi đó, các sản phẩm của sự phân hủy sinh học sẽ được khuếch tán nhanh từ màng sinh học ra ngoài môi trường chất lỏng chuyển động , quá trình như thế cứ tiếp diễn. Khi vi sinh vật phát triển và tăng lên nhiều lần, sinh khối trên các đệm cũng tăng lên, lớp màng sinh vật ngày càng dày. Khi đó sẽ ảnh hưởng đến khả năng cung cấp ôxy hòa tan cơ chất trong bể phản ứng đến tất cả các vi sinh vật trên màng sinh học. Các vi sinh vật ở lớp ngoài cùng của màng sinh học thì cần thiết nhất ôxy hòa tan và cơ chất khuếch tán trong suốt quá trình. Khi ôxy hòa tan và cơ chất khuếch tán qua mỗi lớp màng có sau thì các vi sinh vật ở lớp trước đó tiêu thụ càng nhiều. Lượng oxy hòa tan sẽ giảm dần trong quá trình tạo màng sinh học và sẽ tạo ra các sản phẩm của sự phân hủy hiếu khí, thiếu khí và yếm khí ở các lớp của màng sinh vật. * Cấu tạo của đệm: Đệm có nhiều hình dạng khác nhau, thông thường các đệm có hình trụ đứng, đường kính khoảng 10mm, cao 7mm, bên trong và bề mặt ngoài có nhiều khe để tăng diện tích bề mặt. Diện tích bề mặt của các đệm plastic là rất lớn (120 - 950 m2/m3). Đêm được làm bằng vật liệu Polyethylen để đảmm bảo độ bền, không bị gãy vỡ trong quá trình làm việc. Bể lắng đợt I Bể lắng đợt II * Ưu điểm của MBBR so với những phuơng pháp xử lý sinh học truyền thống: - Sự khuếch tán của chất khí và các chất hòa tan đến vi sinh vật tốt hơn rất nhiều, tốc độ sử dụng cơ chất tăng. - Khả năng tạo sinh khối rất lớn (nồng độ bùn hoạt tính trong bể phản ứng có thể đạt 6000 mg/l). - Giảm thể tích bể phản ứng sinh học vì bề mặt riêng của các đệm plastic rất lớn, do đó công nghệ này thích hợp cho các công trình xử lý nước thải có quy mô nhỏ hoặc để nâng cấp các công trình đã tồn tại mà không đủ diện tích mặt bằng. - Quá trình khử Nitơ và phốt pho rất tốt. - MBBR có thể sử dụng cho tất cả các loại bể sinh học (aerobic, anoxic, hoặc anaerobic). - Hiệu quả xử lý cao. - Vận hành đơn giản và chi phí thấp. I.3.3.2. Bể lắng đợt II: Bể lắng đợt II có nhiệm vụ tách sinh khối lắng trong nước, giữ lại các màng vi sinh ở bể MBBR và các thành phần chất không hòa tan chưa được giữ lại ở bể lắng đợt I. Các màng vi sinh như các bông cặn tiếp xúc với nhau tạo thành các đám bông cặn và lắng xuống đáy trong quá trình xử lý. Tốc độ lắng của đám bông cặn phụ thuộc và nồng đ