Từ trước công nguyên con người đã phải quan tâm tới việc làm thế nào để đảm bảo an toàn bí mật cho các tài liệu, văn bản quan trọng, đặc biệt là trong lĩnh vực quân sự, ngoại giao . Ngày nay với sự xuất hiện của máy tính, các tài liệu văn bản giấy tờ và các thông tin quan trọng đều được số hóa và xử lý trên máy tính, được truyền đi trong môi trường mạng- một môi trường mà mặc định là không an toàn. Do đó yêu cầu về việc có một cơ chế, giải pháp để bảo vệ sự an toàn và bí mật của các thông tin nhạy cảm, quan trong ngày càng trở nên cấp thiết. An toàn bảo mật thông tin là môn học đảm bảo cho mục đích này. Khó có thể thấy một ứng dụng Tin học có ích nào lại không sử dụng các thuật toán mã hóa thông tin.
18 trang |
Chia sẻ: lvbuiluyen | Lượt xem: 2738 | Lượt tải: 1
Bạn đang xem nội dung tài liệu Giải pháp để bảo vệ sự an toàn và bí mật của các thông tin, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
LỜI NÓI ĐẦU
Từ trước công nguyên con người đã phải quan tâm tới việc làm thế nào để đảm bảo an toàn bí mật cho các tài liệu, văn bản quan trọng, đặc biệt là trong lĩnh vực quân sự, ngoại giao . Ngày nay với sự xuất hiện của máy tính, các tài liệu văn bản giấy tờ và các thông tin quan trọng đều được số hóa và xử lý trên máy tính, được truyền đi trong môi trường mạng- một môi trường mà mặc định là không an toàn. Do đó yêu cầu về việc có một cơ chế, giải pháp để bảo vệ sự an toàn và bí mật của các thông tin nhạy cảm, quan trong ngày càng trở nên cấp thiết. An toàn bảo mật thông tin là môn học đảm bảo cho mục đích này. Khó có thể thấy một ứng dụng Tin học có ích nào lại không sử dụng các thuật toán mã hóa thông tin.
Trong thời gian học tập tại trường Đại học công nghiệp Hà Nội, được sự giúp đỡ tận tình của giảng viên Ths.Đỗ Thị Minh Nguyệt, chúng em đã có thêm những kiến thức về môn học cũng như ứng dụng của An toàn bảo mật thông tin trong thực tế. Trong phạm vi bài tập lớn, chúng em sẽ tìm hiểu về hệ mã hóa AES (Advanced Encryption Standard). Chúng em xin chân thành cảm ơn giảng viên Ths. Đỗ Thị Minh Nguyệt đã giúp đỡ chúng em hoàn thành bài tập này!
Chúng em xin chân thành cảm ơn!
Hà nội, tháng 1 năm 2013
Nhóm thực hiện
Phần 1: Tổng quan về bài toán
Trong mật mã học, AES (viết tắt của từ tiếng Anh: Advanced Encryption Standard, hay Tiêu chuẩn mã hóa tiên tiến) là một thuật toán mã hóa khối được chính phủ Hoa kỳ áp dụng làm tiêu chuẩn mã hóa. Giống như tiêu chuẩn tiền nhiệm DES, AES được kỳ vọng áp dụng trên phạm vi thế giới và đã được nghiên cứu rất kỹ lưỡng. AES được chấp thuận làm tiêu chuẩn liên bang bởi Viện công nghệ và tiêu chuẩn quốc gia Hoa Kỳ (NIST) sau một quá trình tiêu chuẩn hóa kéo dài 5 năm
Thuật toán được thiết kế bởi hai nhà mật mã học người Bỉ: Joan Daemen và Vincent Rijmen. Thuật toán được đặt tên là "Rijndael" khi tham gia cuộc thi thiết kế AES. Rijndael được phát âm là "Rhine dahl" theo phiên âm quốc tế.
Quá trình phát triển
Thuật toán được dựa trên bản thiết kế Square có trước đó của Daemen và Rijmen; còn Square lại được thiết kế dựa trên Shark.
Khác với với DES sử dụng mạng Feistel, Rijndael sử dụng mạng thay thế-hoán vị. AES có thể dễ dàng thực hiện với tốc độ cao bằng phần mềmhoặc phần cứng và không đòi hỏi nhiều bộ nhớ. Do AES là một tiêu chuẩn mã hóa mới, nó đang được triển khai sử dụng đại trà.
Mô tả bài toán
Mặc dù 2 tên AES và Rijndael vẫn thường được gọi thay thế cho nhau nhưng trên thực tế thì 2 thuật toán không hoàn toàn giống nhau. AES chỉ làm việc với các khối dữ liệu (đầu vào và đầu ra) 128 bít và khóa có độ dài 128, 192 hoặc 256 bít trong khi Rijndael có thể làm việc với dữ liệu và khóa có độ dài bất kỳ là bội số của 32 bít nằm trong khoảng từ 128 tới 256 bít. Các khóa con sử dụng trong các chu trình được tạo ra bởi quá trình tạo khóa con Rijndael. Mỗi khóa con cũng là một cột gồm 4 byte. Hầu hết các phép toán trong thuật toán AES đều thực hiện trong một trường hữu hạn của các byte. Mỗi khối dữ liệu 128 bit đầu vào được chia thành 16 byte (mỗi byte 8 bit),có thể xếp thành 4 cột, mỗi cột 4 phần tử hay là một ma trận 4x4 của các byte,nó được gọi là ma trận trạng thái, hay vắn tắt là trạng thái (tiếng Anh: state, trang thái trong Rijndael có thể có thêm cột) . Trong quá trình thực hiện thuật toán các toán tử tác động để biến đổi ma trận trạng thái này.
Trong phạm vi bài tập, chúng em sẽ tìm hiểu về thuật toán AES với dữ liệu đầu vào là 128 bit và sử dụng khóa 128bit.
3. Phân công tìm hiểu
Thuật toán AES là 1 trong những thuật toán tiên tiến và đang được sử dụng nhiều trên thế giới vì tính an toàn. Vì thế trong quá trình tìm hiểu nhóm em sẽ phân công công việc cho các thành viên như sau:
Phạm Đăng Hảo: Tìm hiểu cách thức mã hóa AES
Trần Văn Minh: Tìm hiểu cách thức giải mã AES
Phần 2: Mã Hóa AES
Nguyên tắc
Mã hóa AES sử dụng dữ liệu đầu vào và key là hệ Hex, vì thế bản rõ và key phải được chuyển đổi từ hệ ASCII sang hệ Hex.
Tùy thuộc vào độ dài của key khi sử dụng 128bit, 196bit và 256 bit mà AES có các cách mã hóa với số lần lặp khác nhau. Cụ thể
Độ dài khóa(Nk)
Kích thước khối (Nb)
Số lần lặp
AES 128
4
4
10
AES 196
6
4
12
AES 256
8
4
14
Các bước thực hiện
Khởi động vòng lặp
AddRoundKey — Mỗi cột của trạng thái đầu tiên lần lượt được kết hợp với một khóa con theo thứ tự từ đầu dãy khóa.
Vòng lặp
SubBytes — đây là phép thế (phi tuyến) trong đó mỗi byte trong trạng thái sẽ được thế bằng một byte khác theo bảng tra (Rijndael S-box)
ShiftRows — dịch chuyển, các hàng trong trạng thái được dịch vòng theo số bước khác nhau.
MixColumns — quá trình trộn làm việc theo các cột trong khối theo một phép biến đổi tuyến tính.
AddRoundKey
Vòng lặp cuối
SubBytes
ShiftRows
AddRoundKey
Mã hóa key
Sau mỗi vòng lặp, đến bước AddRoundKey, kết quả sẽ được (+) 1 khóa round key. Vậy Round key được tính như thế nào. Phần này chúng ta sẽ tìm hiểu về cách mã hóa Round key
Ta có key ban đầu:
2b
28
Ab
09
7e
Ae
F7
Cf
15
D2
15
4f
16
A6
88
3c
Để thực hiện việc tính Round key(1). Đầu tiên ta sẽ lấy cột cuối cùng của key ban đầu. Đảo bit đầu tiên xuống dưới
09
Cf
4f
3c
Thành
Cf
4f
3c
09
Sau đó ta đi so sánh với bảng S-box
Cụ thể ta có: Cf=8a
4f=84
3c=eb
09=01
8a
84
Eb
01
Tiếp theo ta lấy cột từng cột của Key cũ(+)kết quả trên (+) Rcon
Với Rcon=
01
00
00
00
2b
(+)
8a
(+)
01
=
A0
7e
84
00
Fa
15
Eb
00
Fe
16
01
00
17
Sau khi tính ta có cột thứ 1 của Round key(1)
A0
Fa
Fe
17
Tiếp tục ta sẽ lấy cột thứ 2 của key (+) cột thứ nhất của RoundKey(1) nhưng không cộng với Rcon, ta có côt thứ 2 của RoundKey(1)
A0
88
Fa
54
Fe
2c
17
bl
Tiếp tục, ta lại lấy cột thứ 3 của key (+) cột thứ 2 của RoundKey (1) ta được cột thứ 3 của Roundkey(1)
A0
88
23
Fa
54
A3
Fe
2c
39
17
bl
39
Tiếp tục, ta lại lấy cột thứ 4của key (+) cột thứ 3 của RoundKey (1) ta được cột thứ 4 của Roundkey(1)
A0
88
23
2a
Fa
54
A3
6c
Fe
2c
39
76
17
bl
39
05
Roundkey(1)
Cuối cùng ta RoundKey(1). Tương tự ta sẽ tính các RoundKey tiếp. Trong bài này ta sử dụng khóa 128b nên sẽ có 10 lần lặp. vì thế ta sẽ có 10 Roundkey
F2
C2
95
F2
7a
96
B9
43
59
35
80
7a
73
59
F6
7f
Roundkey(2)
3d 80 47
7d
47
16
Fe
3e
1e
23
7e
44
6d
7a
88
3b
Roundkey(3)
Ef
44
A5
41
A8
52
5b
7f
B6
71
25
3b
Db
0b
Ad
00
Roundkey(4)
D4
D1
C6
F8
8c
83
9d
87
Ca
F2
B8
Bc
11
F9
15
bc
Roundkey(5)
6d
88
A3
7a
11
0b
3e
Fd
Db
F9
86
41
Ca
00
93
fd
Roundkey(6)
4e
54
F7
0e
5f
5f
C9
F3
84
A6
4f
B2
4e
A6
Dc
4f
Roundkey(7)
Ea
D2
73
21
B5
8d
Ba
D2
31
2b
F5
60
7f
8d
29
2f
Roundkey(8)
Ac
77
66
F3
19
Fa
dc
21
28
D1
29
41
57
5c
00
6e
Roundkey(9)
D0
14
F9
A8
C9
Ee
25
89
E1
3f
0c
C8
B6
63
0c
A6
Roundkey(10)
Khởi động vòng lặp
Vd: cho Plantext và Key sau khi chuyển đổi sang ASCII
Chuyển đổi từ bản rõ (hệ ASCII sang hệ Hex)
(Plan text)
32
88
31
E0
43
5a
31
37
F6
30
98
07
A8
8d
A2
34
Chuyển đổi key(hệ ASCII sang hệ Hex)
(key)
2b
28
Ab
09
7e
Ae
F7
Cf
15
D2
15
4f
16
A6
88
3c
Bước 1: Add Round Key
Ta thực hiện lấy Plan text (+) Key
Vd: 32 (+) 2b
Biến đổi 32 về hệ hex= 0011 0010
Biến đổi 2b về hệ hex= 0010 1011
0011 0010
(+)
0010 1011
______________
(=) 0001 1001
Cách tính: ta lấy từng số cộng với nhau. Nếu 2 số bằng nhau (đều là số 0 hay số 1) thì kết quả sẽ là 0, còn 2 số khác nhau kết quả là số 1
Từ kết quả 0001 1001 ta biến đổi về hệ 16 thì kết quả là 19
Từ đó ta có bảng
19
A0
9a
E9
3d
F4
C6
F8
E3
E2
8d
48
Be
2b
2a
08
Tiếp theo, bắt đầu vào vòng lặp
Vòng lặp
B1: SubBytes
Từ bảng trên ta đem so sánh với bảng S-Box
Với giá trị 19, ta tìm đến hàng 1 (1x) cột 9 (x9) ta được giá trị “d4”
Với giá trị 3d, ta tìm đến hang 3 (3x) cột d (xd) ta được giá trị “27”
Tương tự với các giá trị còn lại ta có bảng
D4
E0
B8
1e
27
Bf
B4
41
11
98
5d
52
ae
F1
E5
30
B2.Shiftrows
Từ bảng thu được sau khi thực hiện SubBytes, ta thực hiện bước 2. Bước 2 sẽ thực hiện chuyển các bit tại các hàng về sau theo thứ tự:
Hàng thứ 1 không chuyển
Hàng thứ 2 chuyển bit đầu tiên về vị trí bit cuối cùng, các bit còn lại sẽ đẩy lên trên.
27
bf
B4
41
bf
B4
41
27
Hàng thứ 3 chuyển bit đầu tiên về vị trí của bit cuối cùng,các bit còn lại sẽ được đẩy lên. Sau đó lại thực hiện việc chuyển 1 lần nữa
11
98
5d
52
98
5d
52
11
5d
52
11
98
Tương tự như vậy,hàng thứ 4 sẽ thực hiện chuyển vị trí bit đầu tiên xuống bit cuối cùng và lặp lại 2 lần
ae
F1
E5
30
F1
E5
30
ae
E5
30
ae
F1
30
ae
F1
E5
Sau khi thực hiện chuyển bit, ta có kết quả
D4
E0
B8
1e
bf
B4
41
27
5d
52
11
98
30
ae
F1
E5
B3.Mix Column
Sau khi thực hiện việc chuyển bit, ta có bảng kết quả
D4
E0
B8
1e
bf
B4
41
27
5d
52
11
98
30
ae
F1
E5
Trong bước Mix Column, ta sẽ thực hiện việc nhân các cột của bảng kết quả với ma trận mặc định (như hình vẽ).
Cụ thể như sau:
Cột thứ 1:
D4
Bf
5d
30
Ta sẽ lấy cột nhân với hàng theo quy tắc
(D4.02) xor (bf.03) xor (5d.01)xor(30.01)=X1
Tính (D4.02)
Biến đổi D4 về hệ Hex:D4=11010100
Với số nhân là “02”, ta có cách thực hiện như sau
Ta sẽ thêm số “0” vào cuối cùng của dãy sau khi chuyển về hệ Hex, vì thế dãy số của chúng ta sẽ biến đổi. Cụ thể trong trường hợp này, số “1” đầu tiên của dãy sẽ bị loại bỏ
D4=10101000
Sau đó, chúng ta sẽ lấy kết quả sau khi thêm bit nhân với dãy bit (00011011)
10101000
Xor
00011011
= 10110011
Sau đó chúng ta tiếp tục tính (bf.03)
Trong trường hợp số nhân là “03”, ta có:
03=02+01
Từ đó (bf.03)=(bf.02) xor (bf.01)
Với (bf.02) ta thực hiện tương tự như tính (D4.02)
Bf=10111111
Dịch bit: bf=01111110
01111110
Xor
00011011
= 01100101
Với (bf.01)=bf=10111111
Từ đó ta có (bf.03)=(bf.02)xor(bf.01)
01100101
Xor
10111111
= 11011010
Tương tự ta có (5d.01)=01011101
(30.01)=00110000
Từ đó:
X1= (D4.02) xor (bf.03) xor (5d.01)xor(30.01)
1011 0011
Xor
1101 1010
Xor
0101 1101
Xor
0011 0000
X1= 0000 0100=04
Tiếp tục với đến hết ta có :
D4
Bf
5d
30
=
04
66
81
E5
Sau khi thực hiện xong bước MixColumn, ta có kết quả
D4
E0
B8
1e
bf
B4
41
27
5d
52
11
98
30
ae
F1
E5
04
E0
48
28
=
66
Cb
F8
06
81
19
D3
26
E5
9a
7a
4c
B4. AddRound Key
Từ kết quả của bảng MixColumn, ta (+) RoundKey tương ứng(Trong vòng lặp thứ nhất sẽ +() RoundKey(1) và tương tự với các vòng lặp còn lại)
04
E0
48
28
66
Cb
F8
06
81
19
D3
26
E5
9a
7a
4c
A0
88
23
2a
Fa
54
A3
6c
Fe
2c
39
76
17
bl
39
05
Roundkey(1)
A4
68
6b
02
=
9c
9f
5b
6a
7f
35
Ea
50
F2
2b
43
49
Sau khi kết thúc AddRoundKey, vòng lặp thứ 2 bắt đầu
Input sẽ là kết quả của vòng Addroundkey trước:
Vòng Lặp Cuối
Như đã trình bày, với khóa k=128b, mã hóa AES sẽ thực hiện 9 vòng lặp bao gồm 4 bước.
Đến vòng lặp thứ 10(vòng cuối), AES sẽ chỉ thực hiện 3 bước
SubBytes
ShiftRows
AddRoundKey
Trong vòng lặp cuối sẽ bỏ đi bước MixColumn
Kết thúc vòng 10,ta sẽ thu được kết quả:
39
02
dc
19
25
dc
11
6a
84
09
85
0b
1d
Fd
97
32
Phần 3: Giải mã
Thuật toán giải mã được trình bày như sơ đồ ban đầu ta đã thấy thứ tự các hàm biến đổi được áp dụng khác so với thuật toán mã hóa trong khi dạng của danh sách khóa 2 thuật toán vẫn giữ nguyên. Tuy vậy, một sô đặc điểm của AES cho phép chúng ta có một thuật toán giải mã tương đương có thứ tự áp dụng các hàm biến đổi giống với thuật toán mã hóa ( tất nhiên là biến đổi bằng cách làm ngược cảu chúng). Điều này làm được bằng cách thay đổi sách khóa.
1. Add Round Key:
Ví dụ:
Bản khóa:
39
02
dc
19
25
dc
11
6a
84
09
85
0b
1d
Fd
97
32
Round key 10:
D0
C9
E1
B6
14
Ee
3f
63
F9
25
0c
0c
A8
89
C8
A6
Kết quả:
E9
Cb
3d
Af
31
32
2e
09
7d
2c
89
07
B5
72
5f
94
2. InvShiftRows ()
Đây là quá trình ngược lại so với quá trình ShiftRows()
Ví dụ:
Ban đầu:
E9
Cb
3d
Af
31
32
2e
09
7d
2c
89
07
B5
72
5f
94
Trạng thái 1(xoay 1 byte)
E9
Cb
3d
Af
31
32
2e
09
7d
2c
89
07
72
5f
95
B5
Trạng thái 2(xoay 2 byte):
E9
Cb
3d
Af
31
32
2e
09
89
07
7d
2c
72
5f
95
B5
Kết quả(xoay 3 byte):
E9
Cb
3d
Af
09
31
32
2e
89
07
7d
2c
72
5f
95
B5
3. InvSubBytes ()
Quá trình Process InvSubBytes tương tự với SubBytes, nhưng các bảng được sử dụng khác nhau. Bảng được sử dụng là các bảng S-Box nghịch đảo:
Ví dụ:
Ban đầu:
E9
Cb
3d
Af
09
31
32
2e
89
07
7d
2c
72
5f
95
B5
Kết quả sau khi so bảng:
Eb
59
8b
1b
40
2e
A1
C3
F2
38
13
42
1e
84
E7
D2
4. InvAddRows ()
Ban đầu
Eb
59
8b
1b
40
2e
A1
C3
F2
38
13
42
1e
84
E7
D2
Kết quả:
47
40
A3
4c
37
D4
70
9f
94
E4
3a
42
Ed
A5
A6
bc
4. InverseMixCollums ()
Hàm này là hàm ngược của hàm MixColum. Hàm này làm việc trên các cột của mảng trạng thái, coi mỗi cột như là một mô tô đa thức 4 hạng tử. Các cột được xem là các đa thức trên GF(28) và được nhân theo modulo x4+1 với 1 đa thức cố định là a-1(x):
a-1(x)= {0b}x-3 + {0d}x-3+{09}x + {0e}
Và có thể mô ta bằng phép nhân ma trận như sau:
S’(x)= a-1(x) xor s(x)
Trong đó 0<c<Nb.
Kết quả là 4 byte trong mỗi cột được thay thế bằng công thức sau:
Ví dụ:
Ban đầu:
47
40
A3
4c
37
D4
70
9f
94
E4
3a
42
Ed
A5
A6
bc
Tiến hành:
dòng
Cột
Tất cả các cột được thực hiện cùng 1 cách như trên và kết quả thu được như sau:
87
F2
4d
97
6e
4c
90
Ec
46
E7
4a
C3
A6
8c
D8
95
Làm tương tự với các vòng lặp theo sơ đồ mã hóa và giải mã, kết quả cuối cùng sau vòng lặp thứ 10 là bản rõ như sau:
32
88
31
E0
43
5a
31
37
F6
30
98
07
A8
8d
A2
34