Giới thiệu cọc bê tông ly tâm ứng lực trước (môn học: nền và móng)

Đường kính cọc thường là 0,6m, 0,8m, 1,0m, 1,2m, 1,4m. Chiều dài cọc không hạn chế tùy theo điều kiện địa chất công trình, từng địa điểm xây dựng và quy mô công trình. Thí dụ ở Hà Nội cọc thường cắm vào tầng cát lẫn cuội sỏi ở độ sâu 40 ÷ 50m, ở thành phố Hồ Chí Minh cọc nhồi thường cắm vào tầng đất sét pha nửa cứng ở độ sâu 30 ÷ 50m. Chiều dài cọc khoan nhồi lớn nhất Việt Nam hiện nay là cọc của cầu Mỹ Thuận

docx64 trang | Chia sẻ: lvbuiluyen | Lượt xem: 6059 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Giới thiệu cọc bê tông ly tâm ứng lực trước (môn học: nền và móng), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH KHOA XÂY DỰNG VÀ CƠ HỌC ỨNG DỰNG Giới thiệu cọc bê tông ly tâm ứng lực trước Môn học: NỀN & MÓNG GVHD: TS. Nguyễn Văn Tiếng NHÓM: 10 NỘI DUNG Chương 1: Tổng quan về cọc bê tông cốt thép và các phương pháp đánh giá sức chịu tải của cọc Chương 2: Lý thuyết về bê tông ứng lực trước và chế tạo cọc bê tông ly tâm ứng trước Chương 3: Ví dụ tinh toán về sức chịu tải của các loại cọc và so sanh các kết quả Chương 4: Thi công cọc bê tông ly tâm ứng lực trước Chương 1 TỔNG QUAN VỀ CỌC BÊ TÔNG CỐT THÉP VÀ CÁC PHƯƠNG PHÁP ĐÁNH GIÁ SỨC CHỊU TẢI CỦA CỌC 1.1. Phân loại cọc. 1.1.1 Cọc bê tông cốt thép thường. Cọc bê tông cốt thép thường có dạng hình vuông. Cạnh cọc thường gặp ở Việt Nam hiện nay là 0,2 ÷0,4m, chiều dài cọc thường nhỏ hơn 12m vì chiều dài tối đa của 1 cây thép là 11,7m. Bê tông dùng cho cọc có mác từ 250 ÷350 (tương đương cấp độ bền (B20 ÷B25). Khả năng chịu tải theo vật liệu cọc BTCT thường được tính theo công thức: (1.1) Trong đó: Rb – cường độ chịu nén của bê tông. Ac – diện tích mặt cắt ngang cọc. Rs – cường độ chịu nén của thép. ϕ – hệ số uốn dọc. Tra bảng 1.1 As – diện tích của cốt thép bố trí trong cọc. Bảng 1.1 Hệ số uốn dọc Trong đó: b: Là cạnh cọc vuông. d: Đường kính cọc tròn. Ltt : chiều dài tính toán của cọc, không kể phần cọc nằm trong lớp đất yếu bên trên. 1.1.2 Cọc khoan nhồi. Đường kính cọc thường là 0,6m, 0,8m, 1,0m, 1,2m, 1,4m. Chiều dài cọc không hạn chế tùy theo điều kiện địa chất công trình, từng địa điểm xây dựng và quy mô công trình. Thí dụ ở Hà Nội cọc thường cắm vào tầng cát lẫn cuội sỏi ở độ sâu 40 ÷ 50m, ở thành phố Hồ Chí Minh cọc nhồi thường cắm vào tầng đất sét pha nửa cứng ở độ sâu 30 ÷ 50m. Chiều dài cọc khoan nhồi lớn nhất Việt Nam hiện nay là cọc của cầu Mỹ Thuận. Khả năng chịu tải theo vật liệu cọc được tính theo công thức: (1.2) Trong đó: Rb – cường độ chịu nén của bê tông. Ac – diện tích mặt cắt ngang cọc. Rs – cường độ chịu nén của thép. As – diện tích của cốt thép bố trí trong cọc. k.m – hệ số điều kiện làm việc, k.m = 0,7. 1.1.3 Cọc bê tông ly tâm ứng lực trước. Cọc có đường kính từ 300 ÷1000 (mm). Được sản xuất bằng phương pháp quay ly tâm có cấp độ bền chịu nén của bê tông từ B40 đến B60. Chiều dài và bề dầy thành cọc tùy thuộc vào đường kính ngoài của cọc. Với cọc có đường kính ngoài 300mm thì chiều dài cọc tối đa là 13m và chiều dầy thành cọc là 60mm, với cọc có đường kính ngoài 1000mm thì chiều dài cọc tối đa là 24m, chiều dầy thành cọc là 140mm, … 1.2. Các giải pháp thi công cọc. Cọc hạ bằng búa (búa diezen, búa treo, búa hơi) Cọc hạ bằng máy ép. Cọc hạ bằng phương pháp xoắn (còn gọi là cọc xoắn) thường là cọc thép hoặc cọc có đầu xoắn bằng thép. Cọc hạ bằng phương pháp xói nước. Cọc hạ bằng máy chấn động . 1.2.1 Cọc hạ bằng búa (búa rung , búa hơi, búa diezen ). 1.2.1.1 Búa rung. Búa rung là loại búa khá đa năng. Búa rung có nguyên lý làm việc và các thành phần thiết bị khác hẳn với búa hơi. Giữa búa và cọc không có mũ cọc, thay vào vị trí đó là kẹp. Búa rung thường có tần số rung lớn nhất trong khoảng 15 ÷30 Hz (900 ÷1800 vòng/phút) moment lệch tâm trong khoảng 0,25 ÷1,13 kNm, năng lượng trong khoảng 50 ÷120 kW. Thiết bị này thường chỉ phù hợp với cọc thép (dạng bản). 1.2.1.2 Búa hơi đơn động. Búa này được đẩy lên bằng năng lượng hơi chiều cao rơi búa H là cố định. 1.2.1.3 Búa diezen đơn động và song động. Búa này được đẩy lên bằng năng lượng do diezen cháy chiều cao rơi búa H là thay đổi phụ thuộc vào sức kháng của đất nhược điểm của búa này là: Tiếng nổ lớn (do diezen phát cháy), khí do diezen cháy gây ô nhiễm môi trường. 1.2.2. Chọn sơ bộ búa đóng cọc. Với búa đóng cọc ta cần chọn búa phù hợp để sao cho dễ đóng mà lại không gây hư hại cho cọc. Búa nhẹ nhất có trọng lượng khoảng 0,9 kN và năng lượng biểu kiến là 1,4kN. Búa nặng nhất có trọng lượng tới 1500kN và năng lượng biểu kiến tới 3000kN. Cách chọn búa sơ bộ: Tại độ sâu thiết kế mũi cọc, độ chối hợp lý là e = 3,8 ÷8 mm. Suy ra số nhát đập để cọc đi được 250 mm là N250 = 250/e = 31 ÷66 nhát. Số nhát đập để cọc đi được 1m là N1000 = 125 ÷260 nhát. Năng lượng hữu hiệu của búa nên chọn là: (1.3) Trong đó: Pu – sức kháng cực hạn của đất lên cọc ở độ sâu thiết kế Năng lượng (biểu kiến) của búa là: Ebúa = (REbúa)/r (1.4) Trong đó: r – phần trăm năng lượng hữu ích mà đầu cọc nhận được tạm lấy r = 75%. 1.2.3 Cọc hạ bằng máy ép. Nguyên lý của công tác ép cọc tương tự như thí nghiệm xuyên tĩnh hay thí nghiệm nén tĩnh trong đó người ta dùng kích để ép cọc đi xuống với một tóc độ nào đó đối trọng trong công tác ép cọc thường là những khối bê tông. Để ép được cọc xuống độ sâu thiết kế, lực ép (là lực bán tĩnh) phải thắng được sức kháng cực hạn của đất lên cọc có nghĩa là: Pépcọc ≥ Pu (Pu là sức chịu tải cực hạn của cọc theo đất nền). Với cọc trong đất dính, Pépcọc có thể nhỏ hơn vì quá trình ép làm xáo trộn và giảm sức chịu tải của đất sét. Tuy nhiên, sau một khoảng thời gian nào đó cọc sẽ lấy lại được sức chịu tải. Ngược lại với cọc trong đất cát, Pépcọc có thể lớn hơn nhiều so với 1.3. Phạm vi ứng dụng. Khi tải trọng công trình không nhỏ, và các lớp đất gần bề mặt không tốt thì giải pháp móng nông sẽ có độ lún lệch lớn, hơn nữa để đảm bảo điều kiện an toàn về sức chịu tải thì kích thước móng phải rất lớn. Khi giải móng nông trên nền thiên nhiên tỏ ra không hiệu quả thì ta có thể gia cố nền tuy nhiên giải pháp gia có nền vẫn chưa tỏ ra hiệu quả hoặc quá tốn kém thì giải pháp móng cọc là một sự lựa dễ dàng. 1.3.1 Cọc bê tông cốt thép thường.. Cọc bê tông cốt thép thường có mác bê tông là mác 250 đến mác 350. Với loại cọc này tiết diện cọc chủ yếu nằm trong loại cọc nhỏ, là loại nhỏ hơn 45x45cm sức chịu tải của cọc theo vật liệu vì vậy cũng không lớn. Cọc nhỏ thường là giải pháp tối ưu cho công trình có tải trọng không lớn, khi tải trọng chân cột lớn, đòi hỏi nhiều cọc trong một nhóm cọc do đó đài cọc rất lớn và việc bố trí đài cọc trong công trình ngầm cũng gặp khó khăn. 1.3.2 Cọc khoan nhồi. Cọc nhồi có tiết diện và độ sâu mũi cọc lớn hơn nhiều so với cọc đúc sẵn, nên mặc dù sức kháng đơn vị nhỏ đi, nhưng sức chịu tải vẫn lớn, do đó số lượng cọc trong 7 một đài cọc ít, việc bố trí đài cọc trong các công trình ngầm cũng dễ dàng hơn vì vậy khi tải trong công trình rất lớn khoảng 15 tầng thì ta nên dùng cọc khoan nhồi. Ưu điểm: của cọc khoan nhồi là cọc có thể đặt vào những lớp đất rất cứng thậm chí tới đá mà cọc đóng không thể tới được. Một ưu điểm khác của cọc nhồi là sức chịu tải ngang rất lớn việc thi công cọc nhồi có chấn rung nhỏ hơn nhiều so với thi công cọc đóng, thi công cọc nhồi không gây trồi đất xung quanh không đẩy các cọc sẵn có xung quanh sang ngang. 1.3.3 Cọc ống ly tâm ứng lực trước. Cọc ống ly tâm ứng lực trước có thể cắm sâu hơn nhiều so với cọc bê tông cốt thép thường nên tận dụng được khả năng chịu tải của đất nền do đó số lượng cọc trong một đài ít việc bố trí và thi công cũng dễ dàng, tiết kiệm chi phí xây dựng đài móng. Do sử dụng bê tông và thép cường độ cao nên giảm tiết diện cốt thép dẫn đến giảm trọng lượng thuận tiện cho việc vận chuyển, thi công → Kinh tế hơn. Một ưu điểm khác của cọc bê tông ly tâm ứng lực trước là sức chịu tải ngang lớn do bê tông trong cọc được ứng lực trước nên tăng khả năng chịu kéo của bê tông vì thế tăng khả năng chống thấm, chống ăn mòn. 1.4. Các phương pháp kiểm tra khả năng chịu tải của cọc đơn. 1.4.1. Phương pháp tra bảng thống kê Phương pháp này dựa trên quy phạm CHNΠ2.02.03.85 của Liên Xô Sức chịu tải của cọc đơn được dùng là. (1.5) Trong đó: Kat – hệ số an toàn được lấy (khi xét đến hiệu ứng của nhóm) là. Kat = 1,4 cho móng trên 21 cọc. Kat = 1,55 cho móng từ 11 đến 20 cọc. Kat = 1,65 cho móng từ 6 đến 10 cọc. Kat = 1,75 cho móng dưới cọc. Qtc – xác định gồm 2 thành phần là khả năng chịu mũi và khả năng bám trượt bên hông. (1.6) Trong đó: mR – hệ số điều kiện làm việc tại mũi cọc, lấy mR = 0,7 cho sét, mR = 1 cho cát. mf – hệ số điều kiện làm việc của đất bên hông, lấy mf = (0,9 ÷1) cho cọc, mf = 0,6 cho cọc khoan nhồi. Qm – khả năng chịu tải mũi cọc, tra bảng. fsi – khả năng ma sát xung quanh cọc. Fc – tiết diện cọc. Li, u – chiều dài phân đoạn và chu vi cọc. Đối với cọc trong đất yếu với độ sệt B < 0,6 và cát có Df < 0,33 (trạng thái rời) thì quy phạm khuyến cáo nên xác định bằng phương pháp nén tĩnh. B: Độ sệt. Df: độ chặt tương đối. Riêng đối với cọc khoan nhồi, trị số qm được xác định thep phương pháp sau. Trường hợp trong cát. (1.7) Trong đó: A,B - tra bảng γ ‘,γ - dung trọng của đất nền dưới và trên mũi cọc. L, D – chiều dài cọc và đường kính cọc. Trường hợp trong sét. Trị số qm được tra bảng theo độ sệt B. 1.4.2 Phương pháp tính theo cường độ. (1.8) Với FSs là hệ số an toàn cho thành phần ma sát FSs = 2. FSp là hệ số an toàn cho sức chống dưới mũi cọc FSp = 3. 1.4.2.1 Thành phần ma sát xung quanh cọc Qs. 1.4.2.2 Sức chịu tải của mũi cọc (qp). a. Theo phương pháp Terzaghi. (1.9) (1.10) b. Theo phương pháp Meyerhof c. Theo TCVN 205-1998. 1.4.3. Phương pháp tính từ kết quả thí nghiệm xuyên động (SPT). Xuyên động (SPT) được thực hiện bằng ống tách đường kính 5,1cm, dài 45cm, đóng bằng búa rơi tự do nặng khoảng 63,5kg, với chiều cao rơi là 76cm. Đếm số búa để đóng cho từng 15cm ống lún trong đất (3 lần đếm), 15cm đầu không tính, chỉ dùng giá trị số búa cho 30cm sau là N (búa), được xem như là số búa tiêu chuẩn N. Quy phạm (TCXD205-1998) cho phép dùng công thức của Meyerhof (1956). Trong đó: K1 = 400 cho cọc đóng và K1 = 120 cho cọc khoan nhồi. K2 = 2 cho cọc đóng và K2 = 1 cho cọc khoan nhồi. N – số búa dưới mũi cọc. Ntb – số búa trung bình suốt chiều dài cọc. Hệ số an toàn áp dụng cho công thức trên là 2,5 ÷3,0. 1.4.4. Phương pháp tính từ kết quả thí nghiệm xuyên tĩnh. Xuyên tĩnh được thực hiện bằng mũi côn tiết diện 10cm2 trong đất để đo sức chống xuyên Rp cho từng 20cm độ sâu dưới đất. Từ giá trị Rp này, quy phạm cho phép tính qm và fs như sau: Khả năng chịu tải mũi cọc. qm = Kr.Rp trong đó: Rp – khả năng chống xuyên tại mũi cọc. Kr – hệ số tra theo loại đất và loại cọc, được lấy trung bình Kr = 0,5 cho cọc thường và Kr = 0,3 cho cọc khoan nhồi. Hệ số an toàn cho mũi cọc được lấy FS = 3. Khả năng ma sát xung quanh. Được tính cho từng lớp i mà cọc xuyên qua tương ứng với Rpi, hệ số α trong trường hợp này thay đổi khá lớn. Cọc bê tông α = (30 ÷40) cho sét từ yếu đến cứng. α = 150 cho cát. Cọc khoan nhồi α = (15 ÷35) cho sét từ yếu đến cứng. α = (80 ÷120) cho cát. Hệ số an toàn cho ma sát được lấy FS = 2. 1.4.5. Phương pháp xác định từ thí nghiệm nén tĩnh cọc. Đây là phương pháp chính xác nhất để xác định khả năng chịu tải của cọc đơn, tuy nhiên phương pháp này thực hiện phức tạp và tốn kém nhiều kinh phí. Quy định đòi hỏi số lượng cọc phải tiến hành công tác thử nén tĩnh (3 ÷5)% số lượng cọc thiết kế. Mỗi cấp gia tải thực hiện lấy bằng 1/10 Qu theo thiết kế. Tương quan độ lún S theo lực nén P cho ta xác định giá trị phá hoại sức chịu tải cực hạn của cọc Qu. Trị số giới hạn Qu được xác định như sau: Trong điều kiện đất tốt, giá trị Qu được xác định ngay trên đoạn cong rõ rệt của biểu đồ. Trong điều kiện đất yếu, biểu đồ thể hiện đường cong đều thì giá trị Qu có thể được chọn tại độ lún 0,1 [ ]ghx SΔ= . Trong trường hợp tải trọng của cọc quá lớn không thể thực hiện để đạt đến giá trị xác định tải trọng giới hạn thì ta có thể dùng phương pháp của Davisson như sau: Qu được xác định tại giao điểm của biểu đồ với đường thẳng S có phương trình biểu diễn. 1.4.6. Phương pháp xác định từ thí nghiệm thử động. Công tác thử động được thực hiện cho trường hợp thi công bằng búa đóng. Búa được chọn để có thể tương quan với khả năng chịu tải giới hạn của cọc. Năng lượng búa: Và thỏa điều kiện: Trong đó: Wb – Trọng lượng búa. Wc – Trọng lượng cọc và mũ chụp đầu cọc. K – hệ số tra bảng 1.1. Bảng 1.1 Độ chối giả Đối với đất sét do đặc tính nhạy nên các màng nước bao xung quanh hạt sẽ bị phá hoại khi đóng búa, làm cho đất bị phá hoại cấu trúc và trở nên yếu đi, do đó càng đóng búa nhanh trong đất sét cọc càng dễ xuống, độ chối tăng lên, người ta gọi là độ chối giả. Ngưng lại một thời gian, đóng tiếp cọc khó xuống hơn do đất sét có khả năng phục hồi. Ngược lại trong đất cát, càng đóng nhanh cọc càng khó xuống do ứng suất bị dồn nén ngay tại mũi cọc trở nên rất cứng và cản trở cọc khó xuống được, ta cũng có độ chối giả. Ngưng lại thời gian để cát ở dưới mũi cọc giãn ra cọc đóngsẽ xuống được Hình 1.5: Thí nghiệm thử động Để thử độ chối của cọc khi đóng cọc ta cần phải nghỉ một thời gian như sau: 3 ngày cho cát và 5 - 7 ngày cho đất sét. Do độ chối của một búa được lấy trung bình của 10 búa liên tiếp, ta suy ra sức chịu tải cực hạn của cọc xác định theo công thức sau: Công thức tổng quát. 1.5. Ảnh hưởng của quá trình thi công cọc đến sức chịu tải của cọc 1.5.1 Cọc trong đất sét. Khi thi công cọc, đất sét S bị xáo trộn, do đó sức kháng cắt không thoát nước của đất sét tạm thời giảm xuống. Tuy nhiên, sau một thời gian dài cọc nghỉ, áp lực nước lỗ rỗng dư sẽ tiêu tán dần, ở đa số đất sét sẽ có hiện tượng sức kháng cắt sẽ phục hồi một hoặc toàn phần theo thời gian. Với cọc nhồi nếu ta không giữ thành bằng dung dịch (bentonite hoặc polyme), có thể có những tảng, cục sét bị lở, đặc biệt nếu chúng lở trong quá trình đổ bê tông thì chất lượng bê tông kém đi. Sức kháng cắt của đất sét xung quang cọc sẽ bị giảm do hút ẩm tứ nước thừa trong quá trình đông kết bê tông. Còn nếu khi khoan cọc nhồi có sử dụng dung dịch, mà đáy lỗ khoan lại không được vệ sinh sạch sẽ mùn khoan trước khi đổ bê tông, thì sức kháng mũi giảm đi rất nhiều. Tuy nhiên bê tông tươi trong cọc nhồi lại có một ưu điểm khác là: Xi măng sẽ có phản ứng hóa học với đất sét xung quanh (người ta tận dụng phản ứng này trong việc gia cố đất sét bằng xi măng hoặc vôi). Hơn nữa, thành phần của cọc nhồi thường sần sùi hơn so với cọc đúc sẵn, do đó sức kháng được cải thiện một phần Với đất dính bão hòa nước, ta nên sử dụng sức kháng cắt không thoát nước Su . (tức là cu) để dự báo sức chịu tải của cọc vì đây là trường hợp nguy hiểm hơn. Khi có tải trọng tác dụng, toàn bộ tải trọng sẽ do nước lỗ rỗng dư tiếp nhận. Với đất dính thoát nước kém nước lỗ rỗng dư tiêu tán cực kỳ chậm (coi như không tiêu 16 tán). Do đó thời gian đầu, ứng suất hữu hiệu σ’ không đổi, cho nên sức kháng cắt không đổi. Vì vậy ta sử dụng Su để tính toán. Sau một khoản thời gian dài, nước lỗ rỗng sẽ tiêu tán dần, và do đó tải trọng bên ngoài sẽ truyền dần lên hạt đất. ứng suất hữu hiệu σ’ tăng lên, làm cho sức kháng cắt cũng tăng lên. Như vậy, độ an toàn của công trình cũng tăng lên. Tóm lại thời điểm nguy hiểm nhất với đất dính là khi công trình vừa thi công xong, nước chưa kịp thoát đi. Ngược lại với một số đất dính “quá cố kết mạnh” (OCR ≥ 1), có hiện tượng “chùng” hay “mềm” đi, tức là sức kháng cắt giảm theo thời gian, nguyên nhân của hiện tượng này là khi chịu tải trọng đất “quá cố kết mạnh” có thể bị nở ngang, do đó hút nước ở các vùng lân cận. Độ ẩm tăng lên làm sức kháng cắt giảm đi. Trường hợp này, nên đánh giá sức chịu tải theo thông số thoát nước. 1.5.2 Cọc trong đất cát. Cọc ép hoặc đóng thường làm chặt đất cát xung quanh cọc, dẫn đến sự lún của đất xung quanh cọc, hệ số áp lực ngang Ko sẽ tăng lên, đồng thời sức kháng cắt của đất sẽ tốt hơn. Tính chất của đất có tốt lên làm cho sức chịu tải của cọc (tính theo đất nền) cao hơn. Đối với cọc nhồi, việc khoan lỗ sẽ làm đất cát (cả ở thành hố và đáy hố) rời rạc hơn, do đó sức chịu tải của cọc giảm đi. Ngoài ra nếu không vệ sinh sạch đáy hố khoan, sức kháng mũi sẽ giảm đáng kể. 1.6 Ưu nhược điểm của các loại cọc 1.6.1 Cọc bê tông ly tâm ứng lực trước: + Cọc được sản suất trong nhà máy bằng quy trình khép kín, chất lượng cọc ổn định, dễ kiểm soát khi thi công và đảm bảo chất lượng. + Do bê tông được ứng suất trước nên cọc bê tông ly tâm ứng suất trước sẽ không bị biến dạng, bị nứt trong quá trình vận chuyển, lắp dựng và sử dụng. + Do bê tông được ứng suất trước, kết hợp với quay ly tâm đã làm cho bê tông của cọc đặc chắc chịu được tải trọng cao, không nứt, tăng khả năng chống thấm, chống ăn mòn cốt thép, ăn mòn sulphate trong giai đoạn khai thác công trình. + Do sử dụng bê tông và thép cường độ cao nên giảm tiết diện cốt thép dẫn đến trọng lượng cọc giảm thuận lợi cho việc vận chuyển, thi công dẫn đến kinh tế hơn. 1.6.2 Một số dạng hư hỏng thường gặp ở cọc khoan nhồi: a. Những hư hỏng ở mũi cọc: Sự lắng đọng bùn khoan kết hợp đất nhão ngay dưới mũi cọc. Bê tông mũi cọc bị xốp do lẫn tạp chất v.v... b. Những hư hỏng ở thân cọc: Thân cọc bị oằn, biến hình trong đất yếu. Thân cọc bị gián đoạn bởi các đoạn bê tông xốp, bởi các lớp đất... Tại một vài vị trí, tiết diện thân cọc có hiện tượng co thắt lại hoặc bì phình ra... Trong bê tông cọc có lẫn các thấu kính đất... 1.6.3 Cọc bê tông cốt thép thường: Chiều dài cọc nhỏ, nên khi độ sâu ép cọc lớn thì mối nối cọc nhiều khó kiểm soát độ thẳng đứng của cọc. Do đúc tại công trường trình độ tay nghề công nhân không đều, bị phụ thuộc vào thời tiết nên chất lượng cọc không được ổn định. Chương 2 LÝ THUYẾT VỀ BÊ TÔNG ỨNG LỰC TRƯỚC VÀ CHẾ TẠO CỌC BÊTÔNG LY TÂM ỨNG LỰC TRƯỚC. 2.1. Khái niệm về bê tông ứng lực trước. Bê tông ứng lực trước là bê tông trong đó thông qua lực nén trước để tạo ra và phân bố một phần ứng suất bên trong phù hợp nhằm cân bằng với một lượng ứng suất do tải trọng ngoài gây ra. Với cấu kiện bê tông ULT, ứng suất được tạo ra bằng cách kéo thép cường độ cao. Bê tông thường có cường độ chịu kéo rất nhỏ so với cường độ chịu nén. Đó là nhân tố dẫn đến việc xuất hiện một loại vật liệu hỗn hợp “bê tông cốt thép”. Việc xuất hiện sớm các vết nứt trong bê tông cốt thép do biến dạng không tương thích giữa thép và bê tông là điểm khởi đầu cho một loại vật liệu mới đó là “bê tông ứng suất trước” việc tạo ra ứng suất nén cố định cho một loại vật liệu chịu nén tốt nhưng chịu kéo kém như bê tông sẽ làm tăng đáng kể khả năng chịu kéo vì ứng suất kéo xảy ra khi ứng suất nén đã bị vô hiệu. Sự khác nhau cơ bản giữa bê tông cốt thép và bê tông ứng lực là ở chỗ: Trong khi BTCT chỉ là sự kết hợp đơn thuần giữa bê tông và cốt thép để chúng cùng làm việc một cách bị động thì bê tông ULT là sự kết hợp một cách tích cực có chủ ý giữa bê tông cường độ cao và thép cường độ cao. Trong cấu kiện bê tông ULT người ta đặt vào một lực nén trước tạo bởi việc kéo cốt thép, nhờ tính đàn hồi cốt thép có xu hướng co lại và sẽ tạo nên lực nén trước, lực nén này sẽ gây nên ứng suất trong bê tông và sẽ triệt tiêu hay giảm ứng suất kéo do tải trọng sử dụng gây ra. Do vậy làm tăng khả năng chịu kéo của bê tông và làm hạn chế sự phát triển của vết nứt. Sự kết hợp rất hiệu quả đó đã tận dụng được các tính chất đặc thù của hai vật liệu, đó là trong khi thép có tính đàn hồi và cường độ chịu kéo cao thì bê tông lại dòn và có cường độ chịu kéo nhỏ so với cường độ chịu nén của nó. Như vậy ứng lực trước chính là việc tạo ra cho kết cấu một cách có chủ ý các ứng suất tạm thời nhằm tăng cường sự làm việc của vật liệu trong các điều kiện sử dụng khác nhau. Chính vì vậy bê tông ULT đã trở thành một sự kết hợp lý tưởng giữa hai loại vật liệu hiện đại có cường độ cao.So với BTCT thường thì bê tông ULT có các ưu điểm cơ bản sau Cần thiết và có thể dùng được thép cường độ cao Ứng suất trong thép thông thường giảm từ 100Mpa đến 240Mpa, như vậy để phần ứng suất bị mất đi chỉ là một phần nhỏ của ứng suất ban đầu thì ứng suất của thép ban đầu phải rất cao vào khoảng 1200Mpa đến 2000Mpa. Để đạt được điều này thì việc sử dụng thép cường độ cao là thích hợp nhất Cần phải sử dụng bê tông cường độ cao trong bê tông ULT vì loạ