Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực

Trong cuộc sống, thông thường các chuyên gia có thể giải quyết vấn đề ở một mức độ cao vì họ có một kiến thức sâu rộng trên một lĩnh vực nào đó mà họ hoạt động .Thực tế hiển nhiên và đơn giản này chính là cơ sở nền tảng cho việc thiết kế các máy giải quyết vấn đề dựa trên tri thức mà người ta thường gọi là hệ chuyên gia. Một hệ chuyên gia sử dụng tri thức của một lĩnh vực cụ thể để cung cấp việc giải quyêt vấn đề với “ chất lượng chuyên gia “ trong lĩnh vực đó . Thông thường các nhà thiết kế HCG thu thập tri thức này bao gồm cả lý thuyết đến các kinh nghiệm, kĩ xảo, phương pháp làm tắt, chiến lược heuristic đã được tích luỹ của các chuyên gia con người trong quá trnhf họ làm việc trong một lĩnh vực chuyên môn .Từ tri thức này người ta cố gắng cài đặt chung vào hệ thống để hệ thống có thể mô phỏng cách thức các chuyên gia làm việc. Tuy nhiên không giống với con người, hệ thống không biết cách tự học lấy kinh nghiệm : mà tri thức của máy là do con người cung cấp được tích luỹ dưới dạng ngôn ngữ máy. Đây là nhiệm vụ mà các nhà thiết kế HCG phải đương đầu . Do bản chất heuristic và tri thức chuyên sâu của việc giải quyết vấn đề cấp độ chuyên gia, các chuyên gia nói chung : 1.Cung cấp sự kiểm tra đối với các quá trình suy luận của chung , bằng cách hiển thị các bước trung gian và bằng cách trả lời các câu hỏi về quá trình giải . 2.Cho phép sửa đổi dễ dàng , có thể them , xoá các kĩ năng giải quyết vấn đề vào cơ sở tri thức ( knowledge based) 3.Suy luận một cách heuristic, sử dụng tri thức ( thường không hoàn hảo) để tìm lời giải hữu ích cho vấn đề . Người ta đã xây dựng các hệ chuyên gia để giải quyết hang loạt các vấn đề trong những lĩnh vực y học, toán học , CNTT, địa chất ,… .Các chương trình này đã giải quyết một lớp rộng các vấn đề : - Diễn giải (interpretation) – hình thành những kết luận hay mô tả cao cấp từ những tập hợp dữ liệu thô. - Dự đoán ( prediction )- tiên doán những hậu quả có thể xảy ra khi cho trước một tình huống . - Chuẩn đoán (diagnosis)- xác định nguyên nhân của các sự cố trong các tình huống phức tạp dựa trên những triệu chứng có thể quan sát được . - Thiết kế (design)- tìm ra cấu hình cho các thành phần hệ thống , đáp ứng được các mục tiêu trong khi vẫn thoả mãn các điều kiện rang buộc về thiết kế. - Lập kế hoạch ( planning) – tìm ra một chuỗi các hành động để đạt được một tập hợp các mục tiêu ,khi được cho trước các điều kiện khởi đầu và các rang buộc trong thời gian chạy (run – time ) - Theo dõi (monitoring ) – so sánh hành vi quan sát được của máy với hành vi mong đợi . - Bắt lỗi và sửa chữa ( debugging and repair ) - chỉ định và cài đặt các phương pháp chữa trị cho các trục trặc . - Hướng dẫn (instruction ) – phát hiện và sửa chữa những thiếu sót quan trong quan niệm của học viên về một chủ đề lĩnh vực nào đó . - Điều khiển ( control) - chỉ đạo hành vi của một môi trường phức tạp .

doc33 trang | Chia sẻ: lvbuiluyen | Lượt xem: 2384 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC MỤC LỤC 1 A/ Giới thiệu chung về hệ chuyên gia : 2 I/ Tổng quan về hệ chuyên gia : 4 1. Thiết kế một hệ chuyên gia : 4 2.Các vấn đề phù hợp để xây dựng HCG : 6 3.Quy trình công nghệ tri thức : 7 4.Hệ chuyên gia dựa trên LUẬT : 8 6.Hệ chuyên gia dựa trên MÔ HÌNH : 10 B/Hệ chuyên gia sửa chữa sự cố máy tính (ESRC): 12 a/ Khả năng sử dụng và cấu trúc hệ thống : 12 b/ Biểu diễn tri thức : 16 c/ Bộ phận giải thích : 18 d/ Quản trị tri thức : 20 Kết luận chung : 21 C/Ví dụ về một số hệ chuyên gia khác : 21 A/Kết hợp hệ chuyên gia và nơron nhân tạo để chuẩn đoán sự cố tiềm ẩn trong máy biến áp lực: 21 Tóm tắt : 21 1. Đặt vấn đề 21 2. Hệ chuyên gia dự báo MBA dựa vào phương pháp phân tích khí hoà tan (DGA) – xây dựng dữ liệu nhân tạo cho quá trình luyện mạng nơron dựa trên cơ sở hệ chuyên gia (HCG) 22 3. Ứng dụng mạng MLP chẩn đoán sự cố tiềm ẩn trong MBA 23 4. Xây dựng hệ chuyên gia dựa trên các hướng dẫn của Viện Năng lượng Liên Xô (cũ) [5] 24 5. Kết hợp hệ chuyên gia và mạng nơron để chẩn đoán sự cố tiềm ẩn trong MBA 25 6. Kết luận 25 B/Hệ chuyên gia đánh giá năng lực thiết kế giải thuật cho các bài toán lập trình : 26 1. Giới thiệu 26 2. Cơ sở lý thuyết 26 3. Hệ chuyên gia đánh giá năng lực thiết kế giải thuật cho các bài toán lập trình 26 A/ Giới thiệu chung về hệ chuyên gia : Trong cuộc sống, thông thường các chuyên gia có thể giải quyết vấn đề ở một mức độ cao vì họ có một kiến thức sâu rộng trên một lĩnh vực nào đó mà họ hoạt động .Thực tế hiển nhiên và đơn giản này chính là cơ sở nền tảng cho việc thiết kế các máy giải quyết vấn đề dựa trên tri thức mà người ta thường gọi là hệ chuyên gia. Một hệ chuyên gia sử dụng tri thức của một lĩnh vực cụ thể để cung cấp việc giải quyêt vấn đề với “ chất lượng chuyên gia “ trong lĩnh vực đó . Thông thường các nhà thiết kế HCG thu thập tri thức này bao gồm cả lý thuyết đến các kinh nghiệm, kĩ xảo, phương pháp làm tắt, chiến lược heuristic đã được tích luỹ của các chuyên gia con người trong quá trnhf họ làm việc trong một lĩnh vực chuyên môn .Từ tri thức này người ta cố gắng cài đặt chung vào hệ thống để hệ thống có thể mô phỏng cách thức các chuyên gia làm việc. Tuy nhiên không giống với con người, hệ thống không biết cách tự học lấy kinh nghiệm : mà tri thức của máy là do con người cung cấp được tích luỹ dưới dạng ngôn ngữ máy. Đây là nhiệm vụ mà các nhà thiết kế HCG phải đương đầu . Do bản chất heuristic và tri thức chuyên sâu của việc giải quyết vấn đề cấp độ chuyên gia, các chuyên gia nói chung : 1.Cung cấp sự kiểm tra đối với các quá trình suy luận của chung , bằng cách hiển thị các bước trung gian và bằng cách trả lời các câu hỏi về quá trình giải . 2.Cho phép sửa đổi dễ dàng , có thể them , xoá các kĩ năng giải quyết vấn đề vào cơ sở tri thức ( knowledge based) 3.Suy luận một cách heuristic, sử dụng tri thức ( thường không hoàn hảo) để tìm lời giải hữu ích cho vấn đề . Người ta đã xây dựng các hệ chuyên gia để giải quyết hang loạt các vấn đề trong những lĩnh vực y học, toán học , CNTT, địa chất ,… .Các chương trình này đã giải quyết một lớp rộng các vấn đề : Diễn giải (interpretation) – hình thành những kết luận hay mô tả cao cấp từ những tập hợp dữ liệu thô. Dự đoán ( prediction )- tiên doán những hậu quả có thể xảy ra khi cho trước một tình huống . Chuẩn đoán (diagnosis)- xác định nguyên nhân của các sự cố trong các tình huống phức tạp dựa trên những triệu chứng có thể quan sát được . Thiết kế (design)- tìm ra cấu hình cho các thành phần hệ thống , đáp ứng được các mục tiêu trong khi vẫn thoả mãn các điều kiện rang buộc về thiết kế. Lập kế hoạch ( planning) – tìm ra một chuỗi các hành động để đạt được một tập hợp các mục tiêu ,khi được cho trước các điều kiện khởi đầu và các rang buộc trong thời gian chạy (run – time ) Theo dõi (monitoring ) – so sánh hành vi quan sát được của máy với hành vi mong đợi . Bắt lỗi và sửa chữa ( debugging and repair ) - chỉ định và cài đặt các phương pháp chữa trị cho các trục trặc . Hướng dẫn (instruction ) – phát hiện và sửa chữa những thiếu sót quan trong quan niệm của học viên về một chủ đề lĩnh vực nào đó . Điều khiển ( control) - chỉ đạo hành vi của một môi trường phức tạp . I/ Tổng quan về hệ chuyên gia : Thiết kế một hệ chuyên gia : Hình dưới đây cho thấy các modul quan trọng nhất tạo nên một hệ chuyên gia .Người dung tương tác với hệ chuyên gia thông qua giao diện người sử dụng (user interface) , giao diện này đơn giản hoá việc giao tiếp và che giấu phần lớn sự phức tạp của hệ thống .Các hệ chuyên gia sử dụng mộ số lượng phong phú các kiểu giao diện, bao gồm hỏi và trả lời , điều khiển bởi đơn trình , ngôn ngữ tự nhiên , hay đồ họa ,… Kiến trúc một hệ chuyên gia tiêu biểu Trái tim của hệ chuyên gia là cơ sở tri thức tổng quát ( general knowledge based ) chứa tri thức giải quyết vấn đề của một ứng dụng cụ thể . Cơ sở tri thức bao gồm tri thức tổng quát ( general knowdelge ) cũng như thông tin của một tình huống cụ thể ( case – specific). Động cơ suy diễn (Inference engine ) áp dụng tri thức cho việc giải quyết các bài toán thực tế ;về căn bản nó là một trình thông dịch cho cơ sở tri thức. Trong hệ sinh ( production system ) , động cơ suy diễn thực hiện chu trình điều khiển nhận dạng – hành động ( recognize – act control cycle ) .Việc tách biệt cơ sở tri thức ra khỏi động cơ suy diễn là rất quan trọng vì rất nhiều lí do : Sự tách biệt của tri thức dung để giải quyết vấn đề và động cơ suy diễn sẽ tạo điều kiện cho việc biểu diễn tri thức theo một cách tự nhiên hơn . Bởi vì cơ sở tri thức được cách li khỏi các cấu trúc điều khiển cấp thấp của chương trình,các nhà xây dựng hệ chuyên gia có thể tập trung một cách trực tiếp vào việc nắm bắt và và tổ chức GQVĐ hơn là phải thực hiện trên các chi tiết của việc cài đặt vào máy tính Sự phân chia tri thức và điều khiển cho phép thay đổi một phần cơ sở tri thức mà không tạo ra các hiệu ứng lề trên các phần khác nhau của chương trình . Sự tách biệt này cũng cho phép một phần mềm điều khiển và giao tiếp có thể sử dụng cho nhiều hệ thống khác nhau . Sự modul hóa này cho phép chung ta thử nghiệm nhiều chế độ điều khiển khác nhau trên cùng một cơ sở luật . Hệ con giải thích (explanation subsystem) cho phép chương trình giải thích quá trính suy luận của nó cho người dung .Các câu trả lời này bao gồm các biện minh cho các kết luận của hệ thống ( trả lời cho câu hỏi How ); giải thích vì sao hệ cần dữ liệu đó ( trả lời câu hỏi Why ) Trình soạn thảo cơ sở tri thức ( knowledge base editor ): giúp các nhà lập trình xác định và hiệu chỉnh lỗi trong quá trình làm việc của hệ thống , thường là bằng cách truy xuất những thông tin cung cấp bởi hệ con giải thích. 2.Các vấn đề phù hợp để xây dựng HCG : Các HCG luôn đòi hỏi sự đầu tư rất lớn về tiền bạc và sức lực con người. Những cố gắng để giải quyết một bài toán quá phức tạp,quá ít hiểu biết ,hoặc có những yếu tố không phù hợp với công nghệ hiện đại có thể dẫn đến thất bại , hao tốn tiền của .Các nhà nghiên cứu đã xây dựng một tập hợp các chỉ dẫn có tính không hình thức cho việc xác định khi nào một bài toán thích hợp giải quyết bằng HCG : Cần thiết phải có một giải pháp biện minh cho chi phí và sức lực cho việc xây dựng HCG vì nếu không nó sẽ là một sự lãng phí . Hiểu biết chuyên môn của con người không có sẵn ở mọi nơi cần đến nó ( một hệ chuyên gia chữa bệnh sẽ giúp cho một bác sĩ bình thường có được một sự chuẩn đoán và điều trị ở mức độ chuyên gia ). Vấn đề có thể được giải quyết bằng cách sử dụng các kỹ thuật suy luận ký hiệu . Phạm vi vấn đề được cấu trúc tốt và không đòi hỏi sự suy luận theo lẽ thường tình ( commonsense reasoning). Vấn đề có thể không giải quyết được bằng cách sử dụng các phương pháp tính toán truyền thống . Có sự hợp tác và hiểu ý giữa các chuyên gia ( kinh nghiệm của các chuyên gia được tích luỹ trong quá trình làm việc cực nhọc nên họ có thể không hợp tác là điều có thể vì như vậy họ lo HCG sẽ thay thế họ -> phải có cách xử lí phù hợp ). Vấn đề cần giải quyết phải có kích thước và quy mô đúng mức , vấn đề không được vượt quá trình độ của công nghệ hiện đại . 3.Quy trình công nghệ tri thức : Những người chủ yếu trong việc xây dựng HCG là kỹ sư tri thức và chuyên gia và những người sử dụng cuối . Kỹ sư tri thức là chuyên gia về ngôn ngữ và biểu diễn trong CNTT , với nhiệm vụ chính là chọn các công cụ phần mềm và phần cứng cho đề án , giúp đỡ các chuyên gia phát biêu các tri thức cần thiết và cài đặt tri thức đó vào một cơ sở tri thức đúng đắn và hiệu quả .Thường ban đầu kĩ sư thường không hiểu gì về lĩnh vực ứng dụng . Chuyên gia cung cấp tri thức về lĩnh vực ứng dụng ; đây là người từng công tác trong lĩnh vực ứng dụng và hiểu biết những vấn đề kĩ thuật của nó : chẳng hạn như cách làm tắt , cách sửa lỗi , các đánh giá giải pháp cục bộ và nhiều kĩ năng khác chứng tỏ anh ta là một chuyên gia . Trong phần lớn các ứng dụng thì người dung cuối quyết định những rang buộc thiết kế chính .Những kĩ năng và nhu cầu của người cần dung cần phải xem xét trong suốt quá trình thiết kế : chương trình có làm cho công việc của người dung dễ dàng hơn không , nhan hơn , thuận tiện hơn không ? Giống như hầu hết các bài toán lập trình trong CNTT , việc xây dựng một HCG đòi hỏi một chu trình phát triển theo kiểu không truyền thống dựa trên một bản mẫu đựoc tạo ra ban đầu và việc xem xét lại mã lệnh một cách tăng dần : phương pháp này được gọi là lập trình thăm dò . Nói chung quá trình xây dựng hệ thống thường bắt đầu với việc kĩ sư tri thức cố gắng làm quen với phạm vi xác định vấn đề , điều này giúp ích cho việc giao tiếp với chuyên gia dễ dàng hơn .Nó thường được thực hiện bằng những bài phỏng vấn mở đầu với chuyên gia ,bằng quan sát chuyên gia trong quá trình họ làm việc , hoặc thông qua việc đọc những tài liệu liên quan đến lĩnh vực đó . Tiếp theo kĩ sư và chuyên gia bắt đầu khai thác những tri thức giải quyết vấn đề của chuyên gia này bằng cách đưa ra các câu hỏi, các ví dụ, các trường hợp ,… Ngay sau khi kỹ sư có cái nhìn tổng qua về lĩnh vực vấn đề và đã cùng chuyên gia giải quyết một số bài toán , anh ta bắt đầu vào thiết kế hệ thống : chọn phương pháp biểu diễn tri thức , như luật hay frame ,xác định các chiến lược tìm kiếm ,… Sau cùng kỹ sư thiết kế một phiên bản dùng thử và cùng chuyên gia kiểm tra hiệu quả , đồng thời với việc sửa chữa , cập nhật . Đặc trưng thứ hai của HCG là cần xem chương trình như không bao giờ có kết thúc . Một cơ sở heuristic lớn sẽ luôn luôn có những hạn chế của nó , vì tri thức luôn đổi mới vì vậy luôn luôn phải cập nhật thông tin. Có hai loại hệ chuyên gia được sử dụng : Hệ chuyên gia dựa trên luật ( Rules- based ES ) Hệ chuyên gia dựa trên mô hình ( Model – base reasoning ) 4.Hệ chuyên gia dựa trên LUẬT : Các HCG dựa trên luật biểu diễn tri thức dưới dạng if… then .Cách tiếp cận này thích hợp với mô hình cơ bản và là một trong những kỹ thuật cổ điển và được sử dụng rộng rãi nhất dùng cho biểu diễn tri thức về một lĩnh vực trong HCG . Với HCG dựa trên luật , dữ liệu cho trường hợp cụ thể được giữ trong bộ nhớ làm việc ; động cơ suy diễn thực hiện chu trình nhận dạng – hành động của hệ sinh ;cơ chế điều khiển này có thể hướng từ dữ liệu hay hướng từ mục tiêu . Tuy nhiên với một HCG thì tiếp cận hướng từ mục tiêu sẽ tạo điều kiện cho quá trình giải thích hơn : vì trong một hệ hướng mục tiêu , việc suy luận theo đuổi một mục tiêu nào đó , mục tiêu đó bị chia thành nhiều mục tiêu con và cứ như vậy ; kết quả là việc tìm kiếm luôn luôn được hướng dẫn thông qua sự phân cấp mục tiêu và mục tiêu con này . Để có ví dụ cụ thể về vấn đề giải quyết theo hướng mục tiêu , ta xét một HCG nhỏ dùng để chuẩn đoán trục trặc của xe hơi : Luật 1: IF (động cơ nhận được xăng AND động cơ khởi động được ) THEN ( trục trặc là do bugi ) Luật 2: IF (động cơ không khởi động được AND đèn không sang ) THEN ( trục trặc do ăcquy hoặc dây cáp ) Luật 3: IF (động cơ không khởi động được AND đèn sang ) THEN ( trục trặc là do motơ khởi động ) Luật 4: IF (còn xăng trong bình chứa nhiên liệu AND còn xăng trong bộ chế hoà khí ) THEN (động cơ nhận được xăng ) Kết luận về HCG dựa trên luật : +/ Ưu điểm : Khả năng sử dụng trực tiếp các tri thức thực nghiệm của các chuyên gia Tính modul của luật làm cho việc xây dựng và bảo trì luật dễ dàng Có thể thực hiện tốt trong các lĩnh vực hạn hẹp Có tiện ích giải thích tốt Các luật ánh xạ một cách tự nhiên vào không gian tìm kiếm trạng thái Dễ dàng theo dõi một chuỗi các luật và sửa lỗi Sự tách biệt giữa tri thức và điều khiển giúp đơn giản hoá quá trình phát triển của HCG +/ Khuyết điểm : Các luật đạt được từ chuyên gia mang tính heuristic rất cao. VD : trong y học luật “If sốt cao Then bị nhiễm trùng “ mà không thể hiện lí thuyết sau hơn trong y học có quan sát ( là cơ chế cơ thể phản ứng để chống lại vi khuẩn ) Các luật heuristic “ dễ vỡ “ , không xử lí được các trường hợp ngoài dự kiến ; phải cần một chuyên gia có quan sát kỹ lưỡng mới phát hiện ra , nếu không đúng với dữ liệu thì hệ thống không gíải quyết được . Có khả năng giải thích chứ không chứng minh được Các tri thức thường rất phụ thuộc vào công việc , không thể sử dụng cho công việc khác . Khó bảo trì các cơ sở luật lớn . Hệ chuyên gia dựa trên MÔ HÌNH : Dựa vào lỗi của HCG dựa trên luật , thì HCG dựa trên mô hình được đưa ra . HCG dựa trên mô hình là một hệ thống mà sự phân tích căn cứ dựa vào mô tả chi tiết và chức năng của một hệ thống vật lí .Trong thiết kế và sử dụng , HCG dựa trên mô hình tạo ra một sự mô phỏng bằng phần mềm đối với chức năng của cái mà chung ta muốn tìm hiểu hay sửa chữa . Một hệ thống chuẩn đoán dựa trên mô hình đòi hỏi : 1.Mô tả cho mỗi bộ phận trong thiết bị . Từ những mô tả này mà hệ chuẩn đoán có thể mô phỏng hành vi của từng thiết bị 2.Một mô tả cấu trúc bên trong của thiết bị . Đây thường là một biểu diễn của các thành phần và mối quan hệ qua lại giữa chung .Những thông tin này sẽ giúp cho hệ thống mô phỏng sự tương tác giữa các thành phần của thiết bị 3.Việc chuẩn đoán một lỗi cụ thể đòi hỏi sự quan sát việc thực hiện thật sự của thiết bị , thông thường là việc đo các thông số vào/ ra của nó Vì vậy, nhiệm vụ của hệ sẽ xác định bộ phận nào có lỗi dựa trên các hành vi quan sát được . Điều này đòi hỏi phải có thêm các luật mô tả các chế độ có lỗi đã biết cho các bộ phận khác nhau và sự kết nối giữa chung.Hệ suy luận khi đó cần tìm ra những lỗi có khả năng nhất có thể giải thích hành vi quan sát được của hệ thống . Kết luận về hệ suy luận dựa trên mô hình : Một số ưu điểm của hệ này như sau : Tạo khả năng sử dụng tri thức về cấu trúc và chức năng của lĩnh vực trong giải quyết vấn đề Vượt qua hạn chế của HCG dựa trên luật , HCG này có khuynh hướng mạnh ,” khó vỡ “ Một số tri thức có thể chuyển tải cho công việc khác Có khả năng cung cấp các lời giải thích rõ rang cho các nguyên nhân . Một số hạn chế của hệ : Mô hình chỉ mang tính trừu tượng , không thể chi tiết và khái quát hoá được chính xác . Hạn chế về thế giới đóng - tức là những gì không nằm trông mô hình coi như không tồn tại . Khi mô hình không chính xác hoặc không phù hợp thì coi như không có cách giải quyết hợp lí Hệ thống tạo ra có thể lớn và chậm ; độ phức tạp cao , có nhiều tình huống ngoại lệ . B/Hệ chuyên gia sửa chữa sự cố máy tính (ESRC): Giới thiệu : ESRC là một hệ thống được viết ra nhằm mục đích giúp cho những người sử dụng máy tính có khả năng nhận biết được “ bệnh “ của máy tính khi có sự cố xảy ra , đồng thời đưa ra giải pháp tối ưu có thể thực hiện . Trong phần dưới đây sẽ trình bày về cấu trúc hệ thống và cách thức sử dụng của ESRC . a/ Khả năng sử dụng và cấu trúc hệ thống : -Cách sử dụng : ESRC sẽ “ nói chuyện” với người sử dụng thông qua đối thoại trên màn hình .Cuộc nói chuyện do ESRC thực hiện nên những thông tin được người sử dụng đưa vào tại từng thời điểm bị hạn chế .Kết quả đưa ra dưới dạng ngôn ngữ tự nhiên , ở đó các câu và các biểu thức được ghép lại với nhau theo sơ đồ của các phần tử tạo câu .Thông tin đưa vào được chọn từ các biểu thức có dạng cho sẵn hoặc các biểu thức và số liệu rất đơn giản , ngắn gọn . -Mục tiêu: ESRC chỉ có những kiến thức để xác định : Các nguyên nhân gây làm cho máy không hoạt động . Cách sửa chữa một số hỏng hóc cơ bản hoặc hướng dẫn người dung cách xử lí tối ưu . Do vậy, ESRC có hạn chế là chỉ đưa ra được một trường hợp hỏng hóc nào đó mà không thể xác định được tác dụng qua lại , tính tương tác giữa các hỏng hóc của máy tính . -Khả năng của ESRC : Bản than ESRC có các tính năng sau : Đưa ra các giả thuyết : từ những sự cố ban đầu dễ nhận thấy , ESRC đưa ra các giả thuyết về các nguyên nhân gây ra gần nhất có thể bị . Yêu cầu kiểm tra , xử lí : Để khẳng định lại giả thuyết của mình , ESRC yêu cầu người sử dụng kiểm tra máy tính với các nguyên nhân mà nó đưa ra ở trên theo từng trường hợp một, từng bước một Đưa ra phương pháp giải quyết : Đối với từng nguyên nhân mà ESRC đưa ra , nó sẽ cho kết quả là từng cách sửa chữa, giải quyết hợp lí nhất . Giải thích hoạt động của hệ thống : ESRC sẽ giải thích các kết quả , các câu hỏi mà nó đã đặt ra với người sử dụng nếu muốn : Với kết quả , ESRC sẽ giải thích nguyên nhân , căn cứ mà nó đưa ra kết quả đó . Với câu hỏi thì ESRC sẽ giải thích với mục đích , “ suy nghĩ “ nào mà nó đưa ra câu hỏi đó . -Phạm vi sử dụng : Phạm vi sử dụng của ESRC trải trên các mảng sau : Từ các hiện tượng ban đầu mà người sử dụng truyền đạt cho ESRC, ESRC sẽ từng bước đưa ra kết quả nhỏ rồi hướng dẫn người sử dụng cách kiểm tra sự cố để đến khi có được kết quả cuối cùng . Từ kết quả mà ESRC kết luận , nó sẽ đưa ra cách sửa chữa hoặc phương pháp giải quyết tối ưu . Hướng dẫn người sử dụng cách thức kiểm tra máy tính , sửa chữa một số hỏng hóc cở bản , có kinh nghiệm trong việc chuẩn đoán khi máy tính không hoạt động . -Nhu cầu : Ý tưởng xây dựng hệ chuyên gia ESRC này được đưa ra trong hoàn cảnh hiện nay có rất nhiều người sử dụng máy tính các loại nhưng khả năng hiểu biết cơ bản của họ về máy tính lại rất hạn chế .Khi gặp một số trục trặc nhỏ về máy tính là gần như họ không có khả năng sửa chữa hoặc kiểm tra máy ( ví dụ như lỏng RAM , đứt dây nối bên trong ,….) , cuối cùng lại nhờ người khác hoặc đưa đến chuyên gia để giải quyết những vấn đề đơn giản này .Từ đây xuất hiện ra ý tưởng là có một chuyên gia “ máy tính “ có khả năng nhận biết được phần lớn , chính xác các hỏng hóc của máy tính và đưa ra các phương pháp xử lí tối ưu , nhanh nhất . Cấu trúc của ESRC ở hình dưới , ta có thể nhận thấy một số lệch lạc giữa thông tin mà ESRC có được và tri thức của chuyên gia : + Bên cạnh cơ sở tri thức còn có thêm 2 cơ sở dữ liệu khác chứa thông tin tức thời của máy tính : Dữ liệu về thời gian sử dụng của máy tính ,các hỏng hóc trước đây có thể gặp qua ,… Dữ liệu “động “ gồm các kết quả hoặc kết quả trung gian tạo ra trong qua trình làm việc, hỏi đáp của hệ thống . + Việc thực hiện đối thoại được phối hợp với các quyết định của cơ sở tri thức .Như vậy các mẫu câu hỏi và trả lời của ESRC đều gắn liền với các quy tắc đó .Thứ tự xử lí các quy tắc đó được điều khiển bởi chính các quy tắc quyết định và tổ chức của dữ liệu “động “. b/ Biểu diễn tri thức : Khái quát : Trong ESRC có 3 loại dữ liệu và tri thức được thể hiện : +/ Dữ liệu về máy tính : Những thông tin về máy tính , về các sự cố của máy tính thường xảy ra (được cung cấp bởi các chuyên gia trong quá trình họ làm việc với hệ thống ) +/ Dữ liệ động : là những dữ liệu được tạo ra sau một hoạt động của ESRC trên các dữ liệu về máy tính bị hỏng và dữ liệu động như là những kết quả của hệ ( nghĩa là không phải do chuyên gia cung cấp ). +/ Kiến thức chuyên ngành về máy tính : các kiến thức về máy tính được lưu trong ESRC chính là các quy tắc kiểm quyết định kiểu kiểm tra . Các quy tắc này còn gọi là các quy tắc sản xuất ,trong đó kiểm tra là một sự kiện ( có thể đánh giá đúng hoặc sai ) tr