Tìm kiếm thông tin có một lịch sử lâu đời gắn liền với các thư viện và
trung tâm tìm kiếm thông tin. Trước đây, khi mà máy tính và internet chưa
ra đời, những người có nhu cầu thông tin ngoài việc nhờ sự trợ giúp thông
tin từ bạn bè, người thân còn có thể tìm đến thư viện hoặc các trung tâm
thông tin để tìm kiếm thông tin cần thiết.
Khi máy tính và Internet ra đời, đó là một bước đột phá về mặt công nghệ.
Thông tin được lưu trữ và truyền đi một cách nhanh chóng. Các tài liệu
được số hoá và đưa lên mạng. Internet trở thành một kho tài nguyên vô tận.
Việc tìm kiếm trong một kho tài nguyên hay Internet để có được thông tin
nhanh nhất và tốt nhất có thể, là một nhu cầu cần thiết.
Trước thực tế đó, máy tìm kiếm ra đời với mô hình cài đặt và thuật toán
giúp cho việc tìm kiếm với dữ liệu lớn trở nên nhanh chóng. Tài liệu được
biểu diễn dưới dạng tập hợp các chỉ mục đại diện cho tài liệu đó. Yêu cầu
tìm kiếm thông tin được biểu diễn dưới dạng câu truy vấn có cấu trúc hoặc
không cấu trúc.Kết quả của yêu cầu là tập hợp các tài liệu phù hợp nhất với
câu truy vấn.
56 trang |
Chia sẻ: lvbuiluyen | Lượt xem: 2062 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Khóa luận Nghiên cứu máy tìm kiếm qua hệ thống greenstone, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
Vũ Đức Khoa
NGHIÊN CỨU MÁY TÌM KIẾM QUA HỆ THỐNG
GREENSTONE
KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY
Ngành: Công Nghệ Thông Tin
HÀ NỘI - 2009
2
Mở Đầu…………….…………….…………….…………….……………………….1
Chương 1. Giới thiệu…………….…………….…………….…………………..3
1.1. Bài toán tìm kiếm…………….…………….…………….…………….……….3
1.2. Sơ lược sự phát triển của các hệ thống tìm kiếm…………….…………...4
1.3. Tình hình nghiên cứu, ứng dụng máy tìm kiếm tại Việt Nam………….5
1.3.1 Tình hình nghiên cứu…………….…………….…………….…………….…..5
1.3.2 Tình hình ứng dụng …………….…………….…………….………………….8
1.4. Động cơ và mục tiêu của luận văn…………….…………….……………...8
Chương 2. Các vấn đề cơ bản trong một hệ thống máy tìm
kiếm…………….…………….…………….…………….…………….………………10
2.1. Tiến trình lập chỉ mục (Indexing) …………….…………….…………….10
2.1.1 Lập chỉ mục…………….…………….…………….…………….…………...10
2.1.2 Các loại chỉ mục…………….…………….…………….…………….………10
2.1.2.1 Chỉ mục tệp đảo…………….…………….…………….…………….…11
2.1.2.2 Chỉ mục tệp ký số…………….…………….…………….……………..12
2.1.2.3 Đánh giá và kết luận…………….…………….…………….…………..15
2.2. Tiến trình tìm kiếm thông tin (Searching) …………….…………….…...16
2.3. Xếp hạng tài liệu liên quan (Ranking) …………….…………….……….17
2.3.1 Các khái niệm cơ bản…………….…………….…………….…………….…17
2.3.2 Xếp hạng tài liệu…………….…………….…………….…………….……...18
Chương 3: Hệ thống Greenstone…………….…………….……………....21
3.1. Giới thiệu chung về Greenstone…………….…………….………………..21
3.1.1 Các bộ tài liệu…………….…………….…………….…………….………..21
3.1.2 Tìm kiếm thông tin…………….…………….…………….…………….……22
3.1.3 Định dạng dữ liệu…………….…………….…………….…………….……..23
3.1.4 Các tài liệu đa phương tiện và đa ngôn ngữ…………….…………….………23
3.1.5 Chức năng phân phối của phầm mềm…………….…………….…………….23
3
3.2. Kiến trúc của hệ thống Greenstone…………….…………….…………...24
3.3. Xây dựng bộ sưu tập…………….…………….…………….……………….26
3.3.1 Khái niệm…………….…………….…………….…………….…………….26
3.3.2 Thực nghiệm xây dựng bộ sưu tập…………….…………….………………29
3.3.2.1 Chương trình mkcol.pl…………….…………….……………………..30
3.3.2.2 Chương trình import.pl…………….…………….…………….………31
3.3.2.3 Chương trình buildcol.pl…………….…………….…………….……..32
3.3.2.4 - Cấu trúc của một bộ sưu tập…………….…………….……………….33
3.3.3 Hiển thị collection lên website……………………………………………….35
3.3.3.1 Thư mục etc…………….…………….…………….…………………...35
3.3.3.2 Thư mục index…………….…………….…………….………………...38
Chương 4: Thực nghiệm xây dựng máy tìm kiếm tiếng Việt……41
4.1. Vấn đề tìm kiếm tiếng Việt và tiếp cận…………….…………….……….41
4.2. Hệ thống Lucene…………….…………….…………….…………………….42
4.3. Phần mềm VietSearch…………….…………….…………….……………..44
4.3.1 Hệ thống lập chỉ mục…………….…………….…………….………………44
4.3.2 Hệ thống tìm kiếm…………….…………….…………….…………………..46
4.3.3 Mô hình tương tự …………….…………….…………….…………………..46
4.3.3.1 Hệ số Cosine…………….…………….…………….…………….…….47
4.3.3.2 Khoảng cách Euclidean…………….…………….…………….……….47
4.3.3.3 Khoảng cách Manhattan…………….…………….…………….………47
4.3.4 Bộ phân loại tự động…………….…………….…………….………………..48
4.3.5 Tìm kiếm các tài liệu liên quan…………….…………….…………….……..49
4.4. Kết quả và đánh giá…………….…………….…………….………………....49
KẾT LUẬN…………….…………….…………….…………….………………..52
4
BẢNG CÁC TỪ VIẾT TẮT
Kí hiệu Từ Tiếng Anh Giải thích
IFID Inverted file index Chỉ mục tệp đảo
SFID Signature file index Chỉ mục tệp ký số
IF Inverted file Tệp đảo
IL Inverted list Danh sách đảo
CSDL Cơ sở dữ liệu
SF Signature file Tệp ký số
5
MỞ ĐẦU
Máy tìm kiếm (Search Engine) đã phát triển khá hoàn thiện ở các nước
phát triển. Ở Việt Nam, nghiên cứu và ứng dụng máy tìm kiếm đang trong
giai đoạn phát triển ban đầu. Luận văn đặt vấn đề nghiên cứu tìm hiểu các
kỹ thuật cơ bản và công nghệ trong xây dựng máy tìm kiếm đồng thời áp
dụng cho tiếng Việt. Mô hình hệ thống mà luận văn đặt trọng tâm nghiên
cứu là hệ thống GreenStone, một hệ thống tìm kiếm hữu dụng phổ biến và
là giải pháp cho nhiều thư viện số.
Trong luận văn này, chúng tôi tìm hiểu sâu vào các công nghệ quan trọng
của máy tìm kiếm: bộ lập chỉ mục (indexing), bộ tìm kiếm (searching), bộ
xếp hạng (ranking). Đồng thời nghiên cứu kiến trúc các hệ thống và engine
sẵn có phục vụ mục đích xây dựng một hệ tìm kiếm cho tiếng Việt. Bên
cạnh đó, một nhiệm vụ quan trọng nữa của luận văn là việc làm thế nào để
áp dụng cho tìm kiếm cho đặc trưng tiếng Việt (áp dụng kết quả của phân
đoạn từ).
Áp dụng những thành tựu của khoa học máy tính để hoàn thiện cỗ máy
tìm kiếm là một công việc quan trọng . Bởi tìm kiếm những thứ tốt nhất
phục vụ cho công việc và cuộc sống là một nhu cầu rất cần thiết của mỗi
người.
6
Bố cục của luận văn gồm:
Chương 1: Giới thiệu
Chương 2: Các vấn đề cơ bản trong một hệ thống máy tìm kiếm
Chương 3: Hệ thống GreenStone
Chương 4: Thực nghiệm xây dựng máy tìm kiếm tiếng Việt
7
CHƯƠNG 1. Giới Thiệu
1.1. Bài toán tìm kiếm
Tìm kiếm thông tin có một lịch sử lâu đời gắn liền với các thư viện và
trung tâm tìm kiếm thông tin. Trước đây, khi mà máy tính và internet chưa
ra đời, những người có nhu cầu thông tin ngoài việc nhờ sự trợ giúp thông
tin từ bạn bè, người thân còn có thể tìm đến thư viện hoặc các trung tâm
thông tin để tìm kiếm thông tin cần thiết.
Khi máy tính và Internet ra đời, đó là một bước đột phá về mặt công nghệ.
Thông tin được lưu trữ và truyền đi một cách nhanh chóng. Các tài liệu
được số hoá và đưa lên mạng. Internet trở thành một kho tài nguyên vô tận.
Việc tìm kiếm trong một kho tài nguyên hay Internet để có được thông tin
nhanh nhất và tốt nhất có thể, là một nhu cầu cần thiết.
Trước thực tế đó, máy tìm kiếm ra đời với mô hình cài đặt và thuật toán
giúp cho việc tìm kiếm với dữ liệu lớn trở nên nhanh chóng. Tài liệu được
biểu diễn dưới dạng tập hợp các chỉ mục đại diện cho tài liệu đó. Yêu cầu
tìm kiếm thông tin được biểu diễn dưới dạng câu truy vấn có cấu trúc hoặc
không cấu trúc. Kết quả của yêu cầu là tập hợp các tài liệu phù hợp nhất với
câu truy vấn.
8
Những năm 90 của thế kỷ trước, tìm kiếm thông tin gần như đồng nghĩa
với tìm kiếm tài liệu/văn bản. Từ năm 2000, các viễn cảnh ứng dụng mới
như ứng dụng trả lời câu hỏi (question answering), ứng dụng nhận dạng chủ
đề (topic detection), hay ứng dụng lưu vết (tracking) trở thành các lĩnh vực
hoạt động mạnh mẽ trong nghiên cứu tìm kiếm thông tin.
Hiện nay, đối với máy tìm kiếm, những nghiên cứu tập trung cho Web có
ngữ nghĩa (Semantic Web). Web có ngữ nghĩa là sự mở rộng của Web hiện
tại mà trong đó thông tin được định nghĩa rõ ràng sao cho con người và
máy tính có thể cùng làm việc với nhau một cách hiệu quả hơn. Tìm kiếm
thông tin của người dùng không chỉ biểu diễn thông tin bằng từ khoá mà
còn được biểu diễn bằng thực thể có tên được đề cập đến trong tài liệu.
Tại mỗi nước khác nhau, máy tìm kiếm mang những đặc trưng riêng của
ngôn ngữ nước đó. Đối với nước ta, xử lý ngôn ngữ tự nhiên đã có những
bước phát triển nhanh chóng và đang đi vào hoàn thiện.
Để phục vụ tốt cho nhu cầu hiện tại ở nước ta, chúng tôi giới hạn phạm vi
đề tài là tìm kiếm thông tin trên văn bản.
1.2. Sơ lược sự phát triển của các hệ thống tìm kiếm
Công cụ đầu tiên được sử dụng cho việc tìm kiếm trên Internet được ghi
nhận cho "Archie” –được tạo bởi Alan Emtage – một sinh viên đại học
McGill, Montreal. Archie sục sạo các lưu trữ trên web, và thiết lập chỉ mục
cho từng tên file tìm được. Người sử dụng truy vấn bằng những từ khóa
phù hợp với tiêu đề của tên file rồi nhận được một danh sách các địa chỉ có
chứa file phù hợp nào đó, sau đó họ kết nối với máy tính và tra soát trong
đó xem có dữ liệu họ đang cần không.
Tiếp theo đó, năm 1991 McCahill của đại học Minnesota đã sáng tạo ra
"Gopher". Giống như Archie, Gopher đánh chỉ mục các tên tệp tin và tiêu
đề của nó. Hai chương trình "Veronica" và "Jughead" được tạo ra sau đó
tìm kiếm các tệp tin trong hệ thống chỉ mục của Gopher. Cả Archie,
Veronica đểu thiếu khả năng về ngữ nghĩa bởi vì chúng không chỉ mục vào
toàn văn bản mà chỉ tới tiêu đề của tài liệu. Điều đó có nghĩa người tìm
9
kiếm phải biết hoặc phải suy luận được tiêu đề của tài liệu mà người đó
đang tìm.
Khi Internet phát triển mạnh thì công cụ tìm kiếm cũng phải được nâng
lên tương xứng. Máy dò hay robot đã giải quyết được vấn đề này. Máy dò
là một loại robot tự động lập chỉ mục cho các trang web, nó chạy khắp trên
mạng một cách hệ thống để thu thập các trang web và khi các trang web
xuất hiện ngày một nhiều thì nó cũng tự động điền thêm vào hệ thống dò
tìm. Máy dò tìm đầu tiên được tạo ra bởi Matthew Gray, một sinh viên
trường MIT vào năm 1993 có tên là World Wide Web Wanderer. Do băng
thông nhỏ và hiếm thời ấy, nên Gray phải ngắt bỏ nhện web (crawler), cài
đặt nó bằng thuật toán theo chiều ngang để mở rộng nhiều trang trước khi
tìm kiếm. Quy trình này hiệu quả hơn và hiện vẫn còn đang được sử dụng
ngày nay.
Máy dò sớm bị các công cụ mạnh hơn thay thế. Một trong những công cụ
đầu tiên đó là webcrawler được một nhà nghiên cứu thuộc đại học
Washington tên là Brain Pinkerton phát triển. Webcrawler đã đóng vai trò
quan trọng trong cuộc cách mạng về tìm kiếm vì đây là chương trình đầu
tiên chỉ mục toàn văn tài liệu trên trang web tìm được.
Năm 1993, Excite được giới thiệu bởi 6 sinh viên trướng đại học Stanford.
Hệ thống này sử dụng sự phân tích thống kê mối quan hệ từ để trợ giúp cho
quá trình search. Chỉ sau 1 năm, Excite đã được tích hợp và đưa lên online
vào tháng 12 năm 1995 và đến nay vẫn là một phần của công ty AskJeeves.
Jerry Yang and David Filo đã tạo ra Yahoo vào năm 1994, khởi đầu như
một danh sách các website yêu thích có đường dẫn URL và mô tả nội dung
trang. Trong vòng 2 năm sau đó, công ty Yahoo ra đời.
Lycos cũng được giới thiệu vào năm 1994. Đây là một search engine lớn,
đã index được hơn 60 triệu documents vào năm 1996 – lượng dữ liệu lớn
nhất trong tất cả các search engine thời kỳ đó.
Năm 1995 Alta Vista ra đời. Đây là search engine đầu tiên cho phép sử
dụng các truy vấn là ngôn ngữ tự nhiên và có công nghệ tìm kiếm ưu việt.
Người ta nói rằng tạo ra Altavista.com là một kỳ tích. Tập đoàn Digital
10
Equipment Corp (DEC) khi đó vừa ra mắt bộ xử lý Alpha siêu tốc và tìm
cách chứng minh sức mạnh của bộ xử lý này. Louis Moninter, một nhà
nghiên cứu thuộc Trung tâm Western của DEC tại Palo Alto, bang
California đã đề xuất xây dựng một công cụ tìm kiếm có thể tải toàn bộ
mạng Internet (cơ sở dữ liệu dung lượng lớn) xuống máy tính tích hợp bộ
xử lý Alpha, sau đó tạo ra một chương trình có thể ứng dụng tốc độ xử lý
của Alpha (đó là máy tìm kiếm). Altavista ra đời từ đó. Mặc dù thất bại sau
này nhưng Alta vista vẫn thực sự ấn tượng do một vài lý do. So với hiện
nay, Alta vista là một Google thời bấy giờ.
Inktomi được khởi đầu vào năm 1996 tại UC Berkeley. Vào tháng 6
năm1999, Inktomi giới thiệu một directory search engine dựa trên công
nghệ "concept induction". Theo như giới thiệu của công ty này thì "concept
induction" có khả năng tiến hành phân tích thói quen của người sử dụng để
đưa ra các trang gợi ý. Inktomi được bán cho Yahoo vào năm 2003.
Năm 1997 Google ra mắt như một dự án nghiên cứu tại trường Đại học
Stanford bởi hai nhà sáng lập Sergey Brin và Larry Page. Máy tìm kiếm
Google mang đến một sự nổi bật với những kết quả tốt hơn cho rất nhiều sự
tìm kiếm. Sự cách tân này, chính là PageRank. Giải thuật này, xắp xếp các
trang web dựa trên số lượng và PageRank của các các trang web khác liên
kết đến trang này. Giải thuật này dựa trên giải thuyết những trang tốt hoặc
trang được quan tâm có nhiều sự liên kết tới hơn những trang khác.
Năm 2000, Yahoo đã cung cấp dịch vụ tìm kiếm dựa trên máy tìm kiếm
của Inktomi. Yahoo đã mua được Inktomi vào năm 2002 và Overture
(chính là AlltheWeb và AltaVista) vào năm 2003. Yahoo đã chuyển sang
máy tìm kiếm Google đến tận năm 2004, khi mà Yahoo triển khai máy tìm
kiếm của mình dựa trên những công nghệ tập hợp được.
Microsoft cũng triển khai MSN Search vào năm 1998 sử dụng kết quả tìm
kiếm của Inktomi. Vào đầu năm 1999, trang web này bắt đầu hiển thị kết
quả tìm kiếm từ Looksmart lẫn kết quả Inktomi ngoại trừ khoảng thời gian
ngắn trong năm 1999 khi kết quả từ Alta Vista được sử dụng để thay thế.
Hiện nay, Google đang là máy tìm kiếm phổ biến nhất. Ở mỗi quốc gia,
đối với thị trường trong nước, đều có các công ty cạnh tranh máy tìm kiếm
11
với Google. Trong đó, một thành công vang dội phải kể đến Baidu, một
máy tìm kiếm phổ biến nhất ở Trung Quốc.
1.3. Tình hình nghiên cứu, ứng dụng máy tìm kiếm tại Việt Nam
1.3.1 Tình hình nghiên cứu
Nghiên cứu máy tìm kiếm bắt đầu ở Việt Nam từ năm 1997. Bắt đầu với
sự xuất hiện Vinaseek(2000) của công ty Tinh Vân và Netnam(2001) của
Viện công nghệ thông tin. Cả hai đều đã gây ra tiếng vang lớn thời bấy giờ.
Đến nay, có rất nhiều các công trình nghiên cứu về máy tìm kiếm. Sau
đây, chúng tôi đưa ra ba hướng nghiên cứu đáng chú ý hiện nay của các
trường đại học trên cả nước.
Tìm kiếm tài liệu, dữ liệu dựa trên Ontology của trường ĐH Công Nghệ
và ĐH Bách Khoa Hà Nội . Trong đó, một Ontology là một mô hình dữ liệu
biểu diễn một lĩnh vực và được sử dụng để suy luận về các đối tượng trong
lĩnh vực đó và mối quan hệ giữa chúng. Trong hệ hống tìm kiếm này, có
hai module: module sinh cá thể từ tập dữ liệu huấn luyện, module suy diễn.
Cả hai module này nhằm đưa về kết quả chứa các tri thức tốt hơn các
phương pháp tìm kiếm thông thường.
Nghiên cứu xây dựng máy tìm kiếm của trường ĐH Bách Khoa TPHCM,
có hai hướng. Đầu tiên, máy tìm kiếm liên hợp (meta search engine), không
giống như máy tìm kiếm thông thường, nó gửi câu truy vấn tới các máy tìm
kiếm khác (tạm gọi là máy tìm kiếm nguồn) như Google, Yahoo và sau đó
xử lý kết quả trả về từ các máy tìm kiếm này trước khi trả ra kết quả cho
người dùng. Máy tìm kiếm liên hợp chủ yếu tập trung vào phát triển các
thuật toán xử lý kết quả từ các máy tìm kiếm khác. Các thuật toán xử lí
thông thường gồm có gom cụm (clustering) để loại bỏ trùng lắp (duplicate
elimination), và phân tích ngữ nghĩa (semantic analysis) để có thể cho kết
quả gần với yêu cầu của người dùng nhất. Bạn có thê tham khảo phần mềm
tại trang web này www.ahhere.com .
Thứ hai, máy tìm kiếm video . Đặc điểm thứ nhất, đó là hướng tới mức
high-level features (còn được gọi là concept). Mức này cho kết quả tốt hơn
mức low-level features (color, shape, texture) - một mức mà rất nhiều các
12
máy tìm kiếm video, ảnh sử dụng. Concept ở đây dùng để chỉ tìm kiếm ở
mức ngữ nghĩa, ví dụ bạn gõ vào airplane thì sẽ tìm được các shot có liên
quan đến airplane. Đặc điểm thứ hai, đó là sự hỗ trợ person search. Nghĩa là
người dùng đưa vào tên, và hệ thống sẽ trả về các video shots có nhân vật
đó xuất hiện. Đặc điểm ba, đó là hỗ trợ exploratory search. Nghĩa là cho
phép những người dùng chưa có ý định tìm kiếm gì cụ thể trong đầu, "thám
hiểm" xem trong video archives có cái gì.
Hướng nghiên cứu cuối cùng, đó là chỉ mục ngữ nghĩa tiềm ẩn (Latent
Semantic Indexing-LSI), được thiết kế để giải quyết vấn đề đồng nghĩa và
các vấn đề đa nghĩa của từ ngữ. LSI dùng kỹ thuật phân tích giá trị riêng
(SVD-singular value decomposition) để giảm bớt kích thước ma trận thuật
ngữ-tài liệu, không gian N-chiều sẽ được giảm bớt xuống một không gian
K chiều, K<<N, không gian mới này được gọi là không gian khái niệm. LSI
được sử dụng ở rất nhiều các ứng dụng tìm kiếm để tăng hiệu năng của hệ
thống.
1.3.2 Tình hình ứng dụng
Máy tìm kiếm ở Việt Nam bắt đầu vào năm 2000, khi mà Vinaseek ra đời,
phục vụ miễn phí trên internet. Đây là công cụ tìm kiếm tiếng Việt mạnh
nhất thời bấy giờ (sau đó có thêm panvietnam.com và hoatieu.com). Bởi sự
hỗ trợ tất cả các bảng mã (TCVN3, VNI, TVCN-6909, VIQR…). Nhưng
sau đó, theo xu hướng chung, hầu hết các web tiếng việt đều tuân thủ mã
Unicode và Google đã hỗ trợ tốt bảng mã quốc tế này. Do đó Vinaseek
không thể hiện được sức mạnh và phải nhường chỗ cho Google Việt Nam.
Ở Việt Nam những năm gần đây, chúng ta cũng thấy xuất hiện rất nhiều
cỗ máy tìm kiếm. Như cỗ máy chuyên tìm kiếm nhạc, video là
www.baamboo.com, mp3.zing.vn hay các website tìm kiếm thông tin tổng
hợp, âm nhạc, hình ảnh như www.monava.vn, www.7sac.com,
www.socbay.com, www.xalo.vn. Sự đối đầu trực tiếp với Google như
Monava, 7sac,.. là không nên. Sự thành công của baamboo, mp3.zing khi
tiếp cận theo hướng “vertical search” (tìm kiếm trong các lĩnh vực chuyên
biệt như tìm nhạc, tìm blog, tìm dịch vụ…), đã chứng tỏ một cách tiếp cận
khôn ngoan khi đối diện với Google. Đó là các loại dịch vụ tìm kiếm theo
13
chiều dọc với khả năng đưa ra thị trường nhanh nhất và phù hợp nhất với
người dùng Việt Nam.
1.4. Động cơ và mục tiêu của luận văn
Với mong muốn nghiên cứu tìm hiểu cỗ máy tìm kiếm và xây dựng máy
tìm kiếm dựa trên những đặc trưng của tiếng Việt, chúng tôi nhận thấy luận
văn đặt trọng tâm vào những mục tiêu chính sau đây:
Tìm hiểu kiến trúc công nghệ cơ bản của máy tìm kiếm.
Đó là tiến trình lập chỉ mục, tiến tình tìm kiếm, xếp hạng
tài liệu.
Tìm hiểu kiến trúc hệ thống Greenstone, để biết được
công nghệ và kiến trúc của máy tìm kiếm là như thế nào.
Ứng dụng công nghệ Lucene để xây dựng máy tìm kiếm
tiếng Việt.
Đưa tách từ (word segmentation) vào máy tìm kiếm tiếng
Việt.
14
Chương 2. Các vấn đề cơ bản trong một hệ thống máy
tìm kiếm
2.1. Tiến trình lập chỉ mục (Indexing)
2.1.1. Lập chỉ mục
Lập chỉ mục là quá trình phân tích và xác định các từ, cụm từ (được gọi là
các term) thích hợp cốt lõi có khả năng đại diện cho nội dung của tài liệu.
Như vậy, vấn đề đặt ra là phải rút trích ra những thông tin chính, có khả
năng đại diện cho nội dung của tài liệu. Thông tin này phải “vừa đủ”, nghĩa
là không thiếu để trả ra kết quả đầy đủ so với nhu cầu tìm kiếm, nhưng
cũng phải không dư để giảm chi phí lưu trữ và chi phí tìm kiếm và để loại
bỏ kết quả dư thừa không phù hợp. Việc rút trích này chính là việc lập chỉ
mục trên tài liệu.
Một thủ tục lập chỉ mục tự động cơ bản cho các tài liệu tiếng Anh có thể
được xử l ý như sau:
Step of tokenization: Tách văn bản ra thành các chuỗi nhờ vào khoảng
trắng, mỗi chuỗi xem như là một từ.
Step of removal of stop words: bỏ những từ thường xuyên xuất hiện trong
hầu hết các tài liệu nhưng lại không quan trọng trong các tài liệu như tính
từ, đại từ.
Step of stemming: loại bỏ các hậu tố (suffixes) để đưa về các từ gốc
Lấy gốc từ (stemming):
{destroy, destroyed, destruction}: destr
mistakes! : {centennial,century,center}: cent
15
2.1.2. Các loại chỉ mục
Trong phần này, chúng tôi giới thiệu hai loại chỉ mục cho tài liệu là chỉ
mục tệp đảo IFID và chỉ mục tệp ký số SFID và sau đó tiến hành đánh giá
hai cấu trúc này.
2.1.2.1. Chỉ mục tệp đảo
Sau khi thực hiện tiến trình lập chỉ mục, chúng ta sẽ có được tệp đảo (IF)
chứa một bộ từ vựng (lexicon) -một danh sách tất cả thuật ngữ xuất hiện
trong CSDL. Bộ từ vựng trợ giúp một ánh xạ từ các thuật ngữ tới các danh
sách đảo (IL) tương ứng của chúng và ở dạng đơn giản nhất của nó là một
danh sách các xâu và địa chỉ đĩa từ. Danh sách đảo (IL) lưu trữ một danh
sách con trỏ tới tất cả xuất hiện của thuật ngữ đó trong văn bản chính. Đây
là phương pháp chỉ mục tự nhiên nhất, gần tương ứng với chỉ mục của một
cuốn sách và với cách dùng mục lục truyền thống.
Hình 2-1 Văn bản mẫu; mỗi dòng là một tài liệu
Ví dụ về một IFID, xét văn bản mẫu ở hình 2-1, với mỗi dòng được coi là
một tài liệu để chỉ mục. IF sinh ra cho văn bản này được chỉ ra ở hình 2-2,
trong đó các thuật ngữ được gộp dạng nhưng không được truy gốc và
không một từ nào bị bỏ qua. Nói chung, các IL cho một CSDL có độ dài rất
khác nhau.
16
Một truy vấn bao gồm một thuật ngữ đơn được trả lời bằng cách quét IL
của nó và truy tìm mọi tài liệu mà nó trích dẫn. Đối với truy vấn Boo