Thuốc trừ sâu hóa học đƣợc sử dụng trong sản xuất nông nghiệp đem lại cho
chúng ta năng suất cao và nhiều lợi ích kinh tế, tuy nhiên chúng cũng đem đến
những vấn đề nhƣ ô nhiễm môi trƣờng và ảnh hƣởng đến sức khỏe của con ngƣời.
Do đó, nhu cầu ngày càng cao trong nông nghiệp là tìm ra phƣơng pháp bảo vệ cây
trồng hòa hợp với hệ sinh thái tự nhiên. Kiểm soát sinh học là một sự lựa chọn thay
thế có nhiều tiềm năng trong việc ngăn cản sự tàn phá do bệnh cây trồng mà không
gây ô nhiễm.
Kiểm soát sinh học liên quan đến việc sử dụng vi sinh vật để ức chế bệnh cây
và tăng cƣờng sức khỏe cây trồng. Nó đặc biệt thích hợp để ngăn chặn những bệnh
từ đất mà việc sử dụng thuốc trừ sâu tổng hợp hóa học cho đến nay vẫn chƣa đem
lại hiệu quả.
Kháng sinh đƣợc cho là một trong những cơ chế quan trọng nhất trong việc
kiểm soát sinh học những bệnh từ đất. Nhiều loài vi khuẩn sử dụng trong những
nghiên cứu kiểm soát sinh học là những loài có thể tạo ra kháng sinh.
Agrobacterium tạo ra agrocin 84 và 434 có nguồn gốc từ nucleoside. Chủng
Baccillus kiểm soát bệnh cây trồng tạo ra lipopeptide fengycin, một phức hợp
aminopolyol zwittermycin A và kanosamine. Tác nhân kiểm soát sinh học
Pseudomonas là đối tƣợng đƣợc nghiên cứu nhiều nhất về khả năng tạo ra kháng
sinh. Chúng tạo ra một chuỗi những kháng sinh phenolic, nhƣ là 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrrolnitrin, và ít nhất 4 loại
phenazine khác nhau. Bên cạnh đó, chúng có phổ kí chủ rộng, bao gồm cà chua, bí,
cà rốt, và bắp cải. Những điều kiện trên đem đến cho chúng tiềm năng phát triển
nhƣ một loại thuốc trừ sâu sinh học đối với nhiều loại cây trồng. Vì vậy, việc
nghiên cứu xác định khả năng định cƣ của vi khuẩn Pseudomonas trên rễ cây trồng
2
rất quan trọng. Cần phát triển một phƣơng pháp hữu hiệu để quan sát những tế bào
vi khuẩn riêng lẻ trong một tập đoàn vi khuẩn trong những mô hình thí nghiệm và
môi trƣờng tự nhiên nhƣ trong biofilm hay trên rễ cây trồng khi muốn nghiên cứu
những hệ thống này.
Protein green fluorescent (gfp) từ loài sứa Aequorea victoria đã đƣợc chứng
minh là có giá trị trong nhiều nghiên cứu sinh học khác nhau. Theo Bloemberg và
ctv (1997) gfp mang lại khả năng nghiên cứu nghiên cứu tế bào mà không phải phá
hủy cấu trúc và cũng không cần thêm vào các cơ chất ngoại sinh. Thêm vào đó,
những tế bào đƣợc đánh dấu gfp có thể quan sát bằng kính hiển vi có gắn bộ lọc
huỳnh quang thông thƣờng nếu đƣợc kích thích ở bƣớc sóng thích hợp, đáp ứng đầy
đủ tính chất cho một hệ thống “marker gene”, “reporter gene” nhằm kiểm soát khả
năng định cƣ của vi khuẩn đối kháng trên đất hay cây trồng. Để đánh dấu vi khuẩn
Pseudomonas fluorescens với marker GFP chúng ta có thể sử dụng nhiều phƣơng
pháp, trong đó tiếp hợp ba thành phần là một trong những phƣơng pháp đơn giản,
dễ thực hiện và có chi phí thấp.
63 trang |
Chia sẻ: lvbuiluyen | Lượt xem: 2053 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Khóa luận Tối ưu quy trình chuyển gene gfp vào vi khuẩn pseudomonas fluorescens bằng phương pháp tiếp hợp ba thành phần, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC NÔNG LÂM TP. HỒ CHÍ MINH
BỘ MÔN CÔNG NGHỆ SINH HỌC
KHÓA LUẬN TỐT NGHIỆP
TỐI ƢU QUY TRÌNH CHUYỂN GENE gfp VÀO VI KHUẨN
Pseudomonas fluorescens BẰNG PHƢƠNG PHÁP
TIẾP HỢP BA THÀNH PHẦN
Ngành: CÔNG NGHỆ SINH HỌC
Niên khóa: 2003 – 2007
Sinh viên thực hiện: TRẦN NGUYỄN THÚY AN
Thành phố Hồ Chí Minh
Tháng 09/2007
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƢỜNG ĐẠI HỌC NÔNG LÂM TP. HỒ CHÍ MINH
BỘ MÔN CÔNG NGHỆ SINH HỌC
KHÓA LUẬN TỐT NGHIỆP
TỐI ƢU QUY TRÌNH CHUYỂN GENE gfp VÀO VI KHUẨN
Pseudomonas fluorescens BẰNG PHƢƠNG PHÁP
TIẾP HỢP BA THÀNH PHẦN
Giáo viên hƣớng dẫn Sinh viên thực hiện
TS. LÊ ĐÌNH ĐÔN TRẦN NGUYỄN THÚY AN
Thành phố Hồ Chí Minh
Tháng 09 / 2007
iii
LỜI CẢM ƠN
Thành kính ghi ơn ông bà, cha mẹ đã nuôi nấng, dạy bảo con trƣởng thành
nhƣ ngày hôm nay, cùng những ngƣời thân trong gia đình luôn tạo mọi điều kiện và
động viên con trong suốt quá trình học tập tại trƣờng.
Tôi xin chân thành cám ơn:
Ban giám hiệu Trƣờng Đại Học Nông Lâm Thành Phố Hồ Chí Minh.
Ban chủ nhiệm cùng thầy cô Bộ Môn Công Nghệ Sinh Học đã truyền đạt
mọi kiến thức, giúp đỡ và tạo điều kiện thuận lợi cho tôi trong thời gian học tập ở
trƣờng.
Thầy Lê Đình Đôn đã tận tình hƣớng dẫn và động viên tôi trong thời gian
thực hiện khóa luận tốt nghiệp này.
Thầy Zhang Liqun ở Đại Học Nông Nghiệp Trung Quốc đã cung cấp mẫu vi
khuẩn E.coli DH5α (λ-pir) chứa plasmid pUT-gfp, vi khuẩn E.coli DH5α (λ-pir)
chứa plasmid pRK600 và các tài liệu phục vụ cho thí nghiệm.
Ban giám đốc cùng các anh chị trực thuộc Trung Tâm Phân Tích – Thí
Nghiệm Hóa Sinh Trƣờng Đại Học Nông Lâm Thành Phố Hồ Chí Minh đã hƣớng
dẫn và chia sẻ cùng tôi những khó khăn trong thời gian thực hiện khóa luận.
Anh Nguyễn Văn Lẫm đã nhiệt tình giúp đỡ tôi hoàn thành luận văn này.
Tất cả các anh chị thuộc Bộ Môn Bảo Vệ Thực Vật Khoa Nông Học đã giúp
đỡ tôi trong quá trình thực hiện đề tài.
Các bạn bè lớp Công Nghệ Sinh Học 29 đã giúp đỡ và động viên tôi trong
suốt những năm học cũng nhƣ thời gian thực hiện khóa luận.
Thành phố Hồ Chí Minh, tháng 8 năm 2007
Sinh viên
Trần Nguyễn Thúy An
iv
TÓM TẮT
Đề tài “Tối ƣu quy trình chuyển gene gfp vào vi khuẩn Pseudomonas
fluorescens bằng phƣơng pháp tiếp hợp ba thành phần” do Trần Nguyễn Thúy
An, Đại học Nông Lâm thành phố Hồ Chí Minh thực hiện. Địa điểm: trƣờng Đại
học Nông Lâm Tp. Hồ Chí Minh, thời gian từ tháng 03/2007 đến tháng 08/2007.
Pseudomonas fluorescens là tác nhân kiểm soát sinh học đƣợc nghiên cứu
nhiều nhất do chúng có khả năng kháng nấm mạnh và có phổ kí chủ rộng. Việc phát
triển các phƣơng pháp nhạy để quan sát những tế bào vi khuẩn Pseudomonas
fluorescens trong biofilm hay trên rễ cây trồng đóng vai trò quan trọng khi muốn
nghiên cứu những hệ thống này. Đáp ứng nhu cầu đó, gần đây những marker phân
tử mới đã đƣợc phát triển nhƣ những phƣơng pháp chuyên biệt để đánh dấu sự phân
bố, quần thể và hoạt tính chuyển hóa của các vi sinh vật mục tiêu trong môi trƣờng.
Trong số những marker này, green fluorescent protein (GFP) từ loài sứa Aequorea
victoria đã đƣợc chứng tỏ là công cụ hữu hiệu nhất. Những dòng Pseudomonas
fluorescens đƣợc đánh dấu bởi marker GFP có thể dễ dàng quan sát và phát hiện
qua kính hiển vi phát huỳnh quang mà không cần phải phá hủy cấu trúc và cũng
không cần thêm vào các cơ chất ngoại sinh.
Nội dung nghiên cứu
1. Chọn lọc dòng vi khuẩn Pseudomonas fluorescens có đặc tính đối
kháng mạnh với nấm, phát sáng mạnh trên môi trƣờng KB và có khả
năng kháng kháng sinh thích hợp cho mục đích nghiên cứu.
2. Khảo sát các điều kiện tối ƣu để chuyển gene gfp vào vi khuẩn
Pseudomonas fluorescens bằng phƣơng pháp tiếp hợp ba thành phần.
3. Thực hiện PCR để kiểm tra sự hiện diện của gene gfp trong vi khuẩn
Pseudomonas fluorescens sau khi tiếp hợp.
Kết quả đạt đƣợc
Chọn đƣợc dòng vi khuẩn Pseudomonas fluorescens thích hợp cho mục đích
nghiên cứu. Đạt đƣợc quy trình tối ƣu để chuyển gene gfp vào vi khuẩn
Pseudomonas fluorescens bằng phƣơng pháp tiếp hợp ba thành phần.
v
SUMMARY
Tran Nguyen Thuy An, Nong Lam university, Ho Chi Minh city,
“Establishing an optimal protocol to transfer gfp gene into Pseudomonas
fluorescens by triparental mating”. This subject was conducted at Nong Lam
University from March to August in 2007.
Pseudomonas fluorescens is the most extensively studied biocontrol-agent
because of their strongly antifungal ability and their broad host range. The
development of sensitive methods for observing Pseudomonas fluorescens cells in a
population in biofilms or in plant roots is of great importance for studying these
systems. In response to this problem, novel molecular markers have been developed
recently as specific methods for tracing the distribution, population and metabolic
activity of target microorganisms in a certain environment. Among them, the green
fluorescent protein (GFP) of the jellyfish Aequorea victoria has proved to be the
most powerful tool. The GFP-marked Pseudomonas fluorescens strain can be
conveniently observed by using fluorescence microscopy to study their behaviour.
Researching contents are
1. Selecting the Pseudomonas fluorescens strains which have strongly
antifungal ability, appropriate antibiotic resistance and fluoresce
under short wave length ultraviolet light.
2. Researching the optimal conditions to transfer gfp gene into
Pseudomonas fluorescens by triparental mating.
3. Performing PCR to confirm the gfp gene in Pseudomonas fluorescens
after conjugation.
Obtaining results
The appropriate Pseudomonas fluorescens strains have been selected.
The optimal protocol to transfer gfp gene into Pseudomonas fluorescens by
triparental mating has been obtained.
vi
DANH SÁCH CÁC CHỮ VIẾT TẮT
aa acid amin
bp base pair
DNA Deoxyribonucleic acid
2,4 – DAPG: 2,4 – Diacetylphloroglucinol
ETDA Ethylenediamine tetraacetic acid
F Fertility
GFP Green Fluorescent Protein
Hfr High frequency recombinance
IS Insert sequence
kb Kilo base
kDa Kilo dalton
MCS Multi cloning site
Nm Nano metre
PCR Polymerase Chain Reaction
RBS Ribosome binding site
RNA Ribonucleic acid
SDS Sodium dodecyl sulfate
TAE Tris Acetate EDTA
Tn Tranposon
UV Ultraviolet (light)
w/v Weight for volume
KB King’s B
NST Nhiễm sắc thể
TGE Transposable genetic element
dNTP deoxyribonucleotide_5_triphosphate
LB Luria – Bertain
vii
DANH SÁCH CÁC HÌNH
Hình 2.1 Cơ chế lai giữa F+ và F- ......................................................................................... 7
Hình 2.2 Sự hình thành thể Hfr từ thể F+ ............................................................................ 8
Hình 2.3 Cơ chế lai giữa Hfr và F- ...................................................................................... 8
Hình 2.4 Cơ chế hình thành thể F’ từ thể Hfr .................................................................... 8
Hình 2.5 Cơ chế lai giữa F’và F- .......................................................................................... 9
Hình 2.6 Cấu trúc một trình tự chèn .................................................................................. 11
Hình 2.7 Cấu trúc transposon ............................................................................................. 12
Hình 2.8 Cơ chế phƣơng pháp tiếp hợp 3 thành phần .................................................... 15
Hình 2.9 Cơ chế hoạt động của thiết bị electroporation ................................................. 17
Hình 2.10 Quy trình biến nạp bằng phƣơng pháp CaCl2 ................................................ 18
Hình 2.11 Cấu trúc protein GFP ........................................................................................ 24
Hình 3.1 Cấu trúc plasmid pUT-gfp ......................................................................... 29
Hình 4.1 Khuẩn lạc Pseudomonas fluorescens trên môi trƣờng KB ............................ 36
Hình 4.2 Khuẩn lạc hình thành trên môi trƣờng M9 ....................................................... 38
Hình 4.3 Khuẩn lạc hình thành trên môi trƣờng M9 ....................................................... 39
Hình 4.4 Khuẩn lạc hình thành trên môi trƣờng M9 ....................................................... 40
Hình 4.5 Đối chứng trên môi trƣờng M9 .......................................................................... 41
Hình 4.6 Kết quả đối chứng ............................................................................................... 45
viii
DANH SÁCH CÁC BẢNG
Bảng 3.1 Đặc tính và nguồn gốc một số dòng vi khuẩn và plasmid liên quan
trong thí nghiệm ........................................................................................................ 30
Bảng 4.1 Kết quả kiểm tra tính kháng với kháng sinh kanamycin của một số
dòng vi khuẩn Pseudomonas fluorescens ................................................................. 34
Bảng 4.2 Kết quả kiểm tra tính kháng với kháng sinh chloramphenicol của
một số dòng vi khuẩn Pseudomonas fluorescens ...................................................... 35
Bảng 4.3 Nguồn gốc các dòng vi khuẩn Pseudomonas fluorescens thích
hợp làm đối tƣợng nghiên cứu .................................................................................. 36
Bảng 4.4 Kết quả đếm số khuẩn lạc hình thành trên môi trƣờng M9 thay đổi
theo thời gian nuôi cấy tăng sinh vi khuẩn ............................................................... 37
Bảng 4.5 Kết quả đếm số khuẩn lạc hình thành trên môi trƣờng M9 thay đổi
theo tỉ lệ vi khuẩn ...................................................................................................... 38
Bảng 4.6 Kết quả đếm số khuẩn lạc hình thành trên môi trƣờng M9 thay đổi
theo nhiệt độ ủ khi nuôi chung trên môi trƣờng KB ................................................. 40
ix
MỤC LỤC
Chƣơng 1 ............................................................................................................................... 1
MỞ ĐẦU ............................................................................................................................... 1
1.1 Đặt vấn đề ..................................................................................................... 1
1.2 Mục đích ....................................................................................................... 2
1.3 Yêu cầu ......................................................................................................... 3
Chƣơng 2 ............................................................................................................................... 4
TỔNG QUAN TÀI LIỆU ...................................................................................................... 4
2.1 Sự trao đổi thông tin di truyền ở vi khuẩn ................................................... 4
2.1.1 Giới thiệu ....................................................................................................... 4
2.1.2 Những cơ chế chuyển gene ở vi khuẩn .......................................................... 4
2.1.2.1 Biến nạp (transformation) .......................................................................... 4
2.1.2.2 Tải nạp (transduction) ................................................................................ 5
2.1.2.3 Tiếp hợp (conjugation) .............................................................................. 7
2.1.3 Những yếu tố di truyền có khả năng chuyển vị (transposable genetic
element_TGE) .............................................................................................................. 10
2.1.3.1 Đặc tính của những yếu tố di truyền có khả năng chuyển vị ................... 11
2.1.3.2 Các loại yếu tố di truyền có khả năng chuyển vị ..................................... 11
2.2 Plasmid ....................................................................................................... 13
2.3 Các phƣơng pháp thƣờng dùng để chuyển DNA plasmid ......................... 15
2.3.1 Phƣơng pháp tiếp hợp ba thành phần (triparental mating) .......................... 15
2.3.2 Phƣơng pháp điện biến nạp .......................................................................... 16
2.3.2.1 Phƣơng pháp ............................................................................................ 16
2.3.3 Phƣơng pháp Calcium chloride.................................................................... 18
2.5 Phòng trừ sinh học bệnh cây và tác nhân phòng trừ sinh học .................... 19
2.5.1 Vi khuẩn Pseudomonas fluorescens ............................................................ 20
2.5.1.1 Phân loại vi khuẩn Pseudomonas fluorescens ......................................... 20
2.5.1.2 Các nghiên cứu về vi khuẩn Pseudomonas fluorescens .......................... 21
2.6 Protein GFP ................................................................................................ 24
2.6.1 Cấu trúc và đặc điểm ................................................................................... 24
2.6.2 Tình hình nghiên cứu về gene gfp ............................................................... 25
Chƣơng 3 ............................................................................................................................. 28
VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU ............................................................. 28
3.1 Thời gian và địa điểm thực hiện ................................................................. 28
3.2 Vật liệu và hóa chất, dụng cụ thí nghiệm ................................................... 28
3.2.1 Vật liệu ......................................................................................................... 28
3.2.1.1 Vi khuẩn E.coli DH5α (λ-pir) chứa plasmid pUT-gfp ............................. 28
3.2.1.2 Vi khuẩn E.coli DH5α (λ-pir) chứa plasmid pRK600 ............................. 29
3.2.1.3 Vi khuẩn Pseudomonas fluorescens ........................................................ 29
3.2.2 Các loại môi trƣờng dùng trong nuôi cấy vi khuẩn ..................................... 31
3.2.3 Các loại dụng cụ, thiết bị dùng trong nghiên cứu ........................................ 31
3.3 Phƣơng pháp nghiên cứu ............................................................................ 31
Chƣơng 4 ............................................................................................................................. 34
KẾT QUẢ VÀ THẢO LUẬN ............................................................................................. 34
4.1 Kết quả ....................................................................................................... 34
4.1.1 Kết quả kiểm tra tính kháng kháng sinh của vi khuẩn ................................. 34
x
4.1.2 Kết quả kiểm tra khả năng phát sáng trên môi trƣờng KB .......................... 36
4.1.3 Kết quả khảo sát các điều kiện tối ƣu để chuyển gene gfp vào vi khuẩn
Pseudomonas fluorescens bằng phƣơng pháp tiếp hợp ba thành phần ........................ 37
4.1.3.1 Khảo sát ảnh hƣởng của thời gian nuôi cấy tăng sinh vi khuẩn .............. 37
4.1.3.2 Khảo sát ảnh hƣởng của mật độ vi khuẩn ................................................ 38
4.1.3.3 Khảo sát ảnh hƣởng của nhiệt độ khi nuôi chung trên môi trƣờng KB ... 39
4.1.3.4 Kết quả đối chứng .................................................................................... 40
4.2 Thảo luận .................................................................................................... 41
4.2.1 Các thông số tối ƣu cho quá trình tiếp hợp .................................................. 41
4.2.2 Cơ chế quá trình tiếp hợp ba thành phần ..................................................... 41
4.2.3 Môi trƣờng tối ƣu cho chọn lọc ................................................................... 43
4.2.4 Kết quả đối chứng ........................................................................................ 42
4.2.5 Quy trình tiếp hợp tối ƣu cho dòng vi khuẩn nhận Pseudomonas fluorescens
1.8 44
Chƣơng 5 ............................................................................................................................. 47
KẾT LUẬN VÀ ĐỀ NGHỊ ................................................................................................. 47
5.1 Kết luận ...................................................................................................... 47
5.2 Đề nghị ....................................................................................................... 47
TÀI LIỆU THAM KHẢO ................................................................................................... 48
PHỤ LỤC ............................................................................................................................ 51
1
Chƣơng 1
MỞ ĐẦU
1.1 Đặt vấn đề
Thuốc trừ sâu hóa học đƣợc sử dụng trong sản xuất nông nghiệp đem lại cho
chúng ta năng suất cao và nhiều lợi ích kinh tế, tuy nhiên chúng cũng đem đến
những vấn đề nhƣ ô nhiễm môi trƣờng và ảnh hƣởng đến sức khỏe của con ngƣời.
Do đó, nhu cầu ngày càng cao trong nông nghiệp là tìm ra phƣơng pháp bảo vệ cây
trồng hòa hợp với hệ sinh thái tự nhiên. Kiểm soát sinh học là một sự lựa chọn thay
thế có nhiều tiềm năng trong việc ngăn cản sự tàn phá do bệnh cây trồng mà không
gây ô nhiễm.
Kiểm soát sinh học liên quan đến việc sử dụng vi sinh vật để ức chế bệnh cây
và tăng cƣờng sức khỏe cây trồng. Nó đặc biệt thích hợp để ngăn chặn những bệnh
từ đất mà việc sử dụng thuốc trừ sâu tổng hợp hóa học cho đến nay vẫn chƣa đem
lại hiệu quả.
Kháng sinh đƣợc cho là một trong những cơ chế quan trọng nhất trong việc
kiểm soát sinh học những bệnh từ đất. Nhiều loài vi khuẩn sử dụng trong những
nghiên cứu kiểm soát sinh học là những loài có thể tạo ra kháng sinh.
Agrobacterium tạo ra agrocin 84 và 434 có nguồn gốc từ nucleoside. Chủng
Baccillus kiểm soát bệnh cây trồng tạo ra lipopeptide fengycin, một phức hợp
aminopolyol zwittermycin A và kanosamine. Tác nhân kiểm soát sinh học
Pseudomonas là đối tƣợng đƣợc nghiên cứu nhiều nhất về khả năng tạo ra kháng
sinh. Chúng tạo ra một chuỗi những kháng sinh phenolic, nhƣ là 2,4-
diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrrolnitrin, và ít nhất 4 loại
phenazine khác nhau. Bên cạnh đó, chúng có phổ kí chủ rộng, bao gồm cà chua, bí,
cà rốt, và bắp cải. Những điều kiện trên đem đến cho chúng tiềm năng phát triển
nhƣ một loại thuốc trừ sâu sinh học đối với nhiều loại cây trồng. Vì vậy, việc
nghiên cứu xác định khả năng định cƣ của vi khuẩn Pseudomonas trên rễ cây trồng
2
rất quan trọng. Cần phát triển một phƣơng pháp hữu hiệu để quan sát những tế bào
vi khuẩn riêng lẻ trong một tập đoàn vi khuẩn trong những mô hình thí nghiệm và
môi trƣờng tự nhiên nhƣ trong biofilm hay trên rễ cây trồng khi muốn nghiên cứu
những hệ thống này.
Protein green fluorescent (gfp) từ loài sứa Aequorea victoria đã đƣợc chứng
minh là có giá trị trong nhiều nghiên cứu sinh học khác nhau. Theo Bloemberg và
ctv (1997) gfp mang lại khả năng nghiên cứu nghiên cứu tế bào mà không phải phá
hủy cấu trúc và cũng không cần thêm vào các cơ chất ngoại sinh. Thêm vào đó,
những tế bào đƣợc đánh dấu gfp có thể quan sát bằng kính hiển vi có gắn bộ lọc
huỳnh quang thông thƣờng nếu đƣợc kích thích ở bƣớc sóng thích hợp, đáp ứng đầy
đủ tính chất cho một hệ thống “marker gene”, “reporter gene” nhằm kiểm soát khả
năng định cƣ của vi khuẩn đối kháng trên đất hay cây trồng. Để đánh dấu vi khuẩn
Pseudomonas fluorescens với marker GFP chúng ta có thể sử dụng nhiều phƣơng
pháp, trong đó tiếp hợp ba thành phần là một trong những phƣơng pháp đơn giản,
dễ thực hiện và có chi phí thấp.