Trong những gần đây, ô nhiễm môi trường đất, nước và
không khí đã trở thành vấn đề hết sức nan giải không chỉ ở Việt
Nam mà còn diễn ra ở nhiều nơi trên thế giới, trong đó ô nhiễm
môi trường nước là trầm trọng hơn cả. “Nở hoa nước” là hiện
tượng phát triển bùng phát của vi tảo, đặc biệt là vi khuẩn lam
(VKL) tại các thủy vực nước ngọt và thường gây ra những tác
động xấu lên môi trường như làm đục nước, tăng pH, giảm hàm
lượng oxy hòa tan do quá trình hô hấp hoặc phân hủy sinh khối
tảo và đặc biệt là việc phần lớn VKL sản sinh ra độc tố VKL có
độc tính cao. Ngăn ngừa và giảm thiểu phát triển mạnh mẽ của
VKL là vấn đề môi trường quan trọng cần được quan tâm.
Nhiều phương pháp đã được sử dụng như hóa học, cơ học, sinh
học song hiệu quả không triệt để và khá tốn kém, gây ảnh
hưởng tới hệ sinh thái và khó tiến hành, đặc biệt là trong những
thủy vực lớn. Chính vì vậy việc tìm kiếm, phát triển những giải
pháp mới có hiệu quả, không gây ô nhiễm thứ cấp và thân thiện
với môi trường ngày càng được chú trọng nghiên cứu. Công
nghệ nano là công nghệ liên quan đến việc chế tạo và ứng dụng
các vật liệu có kích thước nano mét (nm). Ở kích thước nano,
vật liệu có nhiều đặc tính nổi trội như có kích thước nhỏ hơn
100 nm, có diện tích tiếp xúc bề mặt lớn so với khối lượng, tạo
ra ảnh hưởng của bề mặt Plasmon cộng hưởng, khả năng bám
dính tốt và được ứng dụng trong nhiều ngành nghề khác nhau
như y tế, mỹ phẩm, điện tử, xúc tác hoá học, môi trường. Vì
vậy luận án được thực hiện với đề tài: “Nghiên cứu chế tạo và
sử dụng vật liệu nano bạc, đồng, sắt để xử lý vi khuẩn lam
độc trong thủy vực nước ngọt” đã được lựa chọn thực hiện.
28 trang |
Chia sẻ: thientruc20 | Lượt xem: 798 | Lượt tải: 5
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo và sử dụng vật liệu nano bạc, đồng, sắt để xử lý vi khuẩn lam độc trong thủy vực nước ngọt, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TRẦN THỊ THU HƢƠNG
NGHIÊN CỨU CHẾ TẠO VÀ SỬ DỤNG VẬT LIỆU
NANO BẠC, ĐỒNG, SẮT ĐỂ XỬ LÝ VI KHUẨN LAM
ĐỘC TRONG THỦY VỰC NƢỚC NGỌT
Chuyên ngành : Kỹ thuật môi trƣờng
Mã số : 9 52 03 20
TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT MÔI TRƢỜNG
Hà Nội - 2018
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
---------------------------
Công trình được hoàn thành tại Học viện Khoa học và Công nghệ,
Viện Hàn lâm Khoa học và Công nghệ Việt Nam
Người hướng dẫn khoa học:
1. PGS. TS. Dương Thị Thủy - Viện Công nghệ môi trường
2. TS. Hà Phương Thư - Viện Khoa học Vật liệu
Phản biện 1:
Phản biện 2:
Phản biện 3:
Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp
Học viện, họp tại Học viện Khoa học và Công nghệ - Viện Hàn
lâm Khoa học và Công nghệ Việt Nam vào hồi giờ ’,
ngày tháng năm 201.
Có thể tìm hiểu luận án tại:
- Thư viện Học viện Khoa học và Công nghệ
- Thư viện Quốc gia Việt Nam
1
GIỚI THIỆU LUẬN ÁN
1. Tính cấp thiết của luận án
Trong những gần đây, ô nhiễm môi trường đất, nước và
không khí đã trở thành vấn đề hết sức nan giải không chỉ ở Việt
Nam mà còn diễn ra ở nhiều nơi trên thế giới, trong đó ô nhiễm
môi trường nước là trầm trọng hơn cả. “Nở hoa nước” là hiện
tượng phát triển bùng phát của vi tảo, đặc biệt là vi khuẩn lam
(VKL) tại các thủy vực nước ngọt và thường gây ra những tác
động xấu lên môi trường như làm đục nước, tăng pH, giảm hàm
lượng oxy hòa tan do quá trình hô hấp hoặc phân hủy sinh khối
tảo và đặc biệt là việc phần lớn VKL sản sinh ra độc tố VKL có
độc tính cao. Ngăn ngừa và giảm thiểu phát triển mạnh mẽ của
VKL là vấn đề môi trường quan trọng cần được quan tâm.
Nhiều phương pháp đã được sử dụng như hóa học, cơ học, sinh
học song hiệu quả không triệt để và khá tốn kém, gây ảnh
hưởng tới hệ sinh thái và khó tiến hành, đặc biệt là trong những
thủy vực lớn. Chính vì vậy việc tìm kiếm, phát triển những giải
pháp mới có hiệu quả, không gây ô nhiễm thứ cấp và thân thiện
với môi trường ngày càng được chú trọng nghiên cứu. Công
nghệ nano là công nghệ liên quan đến việc chế tạo và ứng dụng
các vật liệu có kích thước nano mét (nm). Ở kích thước nano,
vật liệu có nhiều đặc tính nổi trội như có kích thước nhỏ hơn
100 nm, có diện tích tiếp xúc bề mặt lớn so với khối lượng, tạo
ra ảnh hưởng của bề mặt Plasmon cộng hưởng, khả năng bám
dính tốt và được ứng dụng trong nhiều ngành nghề khác nhau
như y tế, mỹ phẩm, điện tử, xúc tác hoá học, môi trường... Vì
vậy luận án được thực hiện với đề tài: “Nghiên cứu chế tạo và
sử dụng vật liệu nano bạc, đồng, sắt để xử lý vi khuẩn lam
độc trong thủy vực nước ngọt” đã được lựa chọn thực hiện.
2. Mục tiêu nghiên cứu của luận án
Nghiên cứu, chế tạo và xác định tính chất, đặc trưng của 03
vật liệu nano (bạc, đồng và sắt) và đánh giá khả năng diệt VKL
của vật liệu nano trong thủy vực nước ngọt.
3. Các nội dung nghiên cứu chính của luận án
2
- Chế tạo và xác định đặc trưng, tính chất của ba loại vật liệu
nano bạc, đồng và sắt.
- Đánh giá khả năng diệt và ức chế VKL của ba loại vật liệu.
- Đánh giá tính an toàn của vật liệu và các chế phẩm ứng
dụng.
- Thực nghiệm ứng dụng của vật liệu ở quy mô phòng thí
nghiệm với mẫu nước hồ Tiền.
Chƣơng 1. Tổng quan nghiên cứu
1.1. Tổng quan về vật liệu nano
1.2. Tổng quan về vi khuẩn lam và hiện tƣợng phú dƣỡng
1.3. Tổng quan về các biện pháp xử lý ô nhiễm tảo độc
Chƣơng 2. Các phƣơng pháp nghiên cứu và thực nghiệm
2.1. Đối tƣợng nghiên cứu
2.2. Hóa chất, thiết bị sử dụng trong nghiên cứu
2.3. Các phƣơng pháp tổng hợp vật liệu
2.3.1. Tổng hợp vật liệu nano bạc bằng phương pháp khử hóa
học
Vật liệu nano bạc được tổng hợp bằng phương pháp khử hóa
học, ion Ag+ trong dung dịch muối bạc được khử thành Ag0 nhờ
tác nhân khử NaBH4.
2.3.2. Tổng hợp vật liệu nano đồng bằng phương pháp khử hóa
học
Vật liệu nano đồng được tổng hợp bằng phương pháp khử
hóa học, khử ion Cu2+ từ muối đồng thành Cu0 nhờ tác nhân
khử NaBH4.
2.3.3. Tổng hợp vật liệu nano sắt từ bằng phương pháp đồng kết
tủa
Vật liệu nano sắt từ Fe3O4 được tổng hợp bằng phương pháp
đồng kết tủa của muối Fe2+ và Fe3+ bởi NH4OH.
2.4. Các phƣơng pháp xác định đặc trƣng cấu trúc vật liệu
Hình thái học của ba loại vật liệu nano được xác định bằng
một số phương pháp như kính hiển vi truyền qua (TEM), kính
hiển vi điện tử quét (SEM), phổ hồng ngoại (IR), phổ nhiễu xạ tia
3
X (XRD), phổ tử ngoại khả kiến (UV-VIS) và phổ tán sắc năng
lượng (EDX).
2.5. Các phƣơng pháp bố trí thí nghiệm
Các phương pháp thí nghiệm như nuôi cấy tảo, lựa chọn vật
liệu nano, đánh giá độc tính của vật liệu, đánh giá sự ảnh hưởng
của các loại kích thước vật liệu, đánh giá tính an toàn của vật liệu
nano lên vi tảo và thí nghiệm với nước hồ Tiền đã được bố trí.
2.6. Các phƣơng pháp đánh giá ảnh hƣởng của vật liệu nano
đến sinh trƣởng của vi tảo
Để đánh giá ảnh hưởng của vật liệu nano đến sinh trưởng
của vi tảo, các phương pháp sau đã được sử dụng: OD, chla,
mật độ tế bào, các phương pháp phân tích một số chỉ tiêu chất
lượng môi trường (NH4
+
, PO4
3-) và phương pháp quan sát bề
mặt tế bào và cắt lát mỏng tế bào.
2.7. Phƣơng pháp thống kê, xử lý số liệu
Chƣơng 3. Kết quả và thảo luận
3.1. Tổng hợp vật liệu nano
3.3.1. Tổng hợp vật liệu nano bạc bằng phương pháp khử hóa học
3.1.1.1. Ảnh hưởng của tỷ lệ nồng độ NaBH4/Ag
+
Phổ đo UV-VIS (Hình 3.1) cho thấy dung dịch nano bạc hấp
thụ ở bước sóng trong khoảng 400 nm và hiệu suất hình thành
các hạt nano bạc đạt cực đại ở tỷ lệ 1:2. Kết quả chụp TEM
(hình 3.2), cho thấy hạt nano bạc thu được có kích thước nhỏ
hơn 20 nm.
Hình 3.1. Phổ UV-VIS các
mẫu nano Ag phụ thuộc tỷ lệ
nồng độ NaBH4/Ag
+
Hình 3.2. Ảnh TEM của nano
Ag phụ thuộc vào tỷ lệ nồng
độ BH4
-
/Ag
+
M3 M4 M5
M1 M2
4
3.1.1.2. Ảnh hưởng của nồng độ chất ổn định chitosan
Kết quả đo UV-VIS trên hình 3.4 cho thấy dung dịch nano
Ag điều chế được hấp thụ ở bước sóng 402-411 nm. Ảnh TEM
của các mẫu nano bạc phụ thuộc vào nồng độ chitosan được thể
hiện trên hình 3.5. Nồng độ chitosan tối ưu cho quá trình điều chế
dung dịch keo nano bạc được chọn là 300 mg/L.
Hình 3.4. Phổ UV-VIS của
nano bạc phụ thuộc vào nồng
độ chitosan
Hình 3.5. Ảnh TEM của nano
bạc phụ thuộc vào nồng độ
chitosan
3.1.1.3. Ảnh hưởng của nồng độ axit citric
Kết quả đo UV-VIS (Hình 3.7) cho thấy dung dịch nano bạc
được điều chế hấp thụ bước sóng trong khoảng 400-412 nm.
Với tỷ lệ [Citric]/[Ag+] = 3,0 các hạt nano bạc thu được có kích
thước nhỏ, đồng đều nhất và đều nhỏ hơn 20 nm, kết quả đo
TEM được thể hiện trên hình 3.8.
Hình 3.7. Phổ UV-VIS của
nano bạc phụ thuộc vào nồng
độ axit citric
Hình 3.8. Ảnh TEM của nano
Ag phụ thuộc nồng độ
[Citric]/[Ag
+
]
M6 M7
M8 M9 M1
0
M1
1
M12 M1
3
M14 M15 M1
6
5
Hình 3.9. Ảnh HR-TEM của vật liệu nano Ag khảo sát ở tỷ lệ
tối ưu
Cấu trúc hạt nano bạc ở tỷ lệ lựa chọn có cấu trúc tinh thể
lục giác điển hình của hạt nano kim loại. Ảnh HR-TEM ở hình
3.9 cho thấy các tinh thể có cấu trúc mạng lập phương tâm mặt
Fcc. Vật liệu nano bạc ở điều kiện tỷ lệ nồng độ chất khử
NaBH4/Ag
+
là 1/4, tỷ lệ [Citric]/[Ag+] = 3,0 và nồng độ
chitosan là 300 mg/L được tổng hợp để thử nghiệm ảnh hưởng
của vật liệu đến sinh trưởng của các đối tượng nghiên cứu trong
luận án.
3.1.2. Chế tạo vật liệu nano đồng bằng phương pháp khử hóa học
3.1.2.1. Ảnh hưởng của tỉ lệ nồng độ NaBH4/Cu
2+
Giản đồ XRD treen hinhf 3.19 xuất hiện cả ba đỉnh có cường
độ hoàn toàn trùng khớp với phổ chuẩn của kim loại đồng với
các mặt (111), (200), (220) tương ứng với góc 2θ = 43,3; 50,4
và 74,0
0
thuộc mạng Bravais trong cấu trúc lập phương tâm mặt
Fcc của kim loại đồng.
Hình 3.10. Phổ XRD của vật
liệu nano Cu khảo sát theo tỉ
lệ NaBH4/Cu
2+
Hình 3.11. Ảnh SEM của các
mẫu nano đồng theo tỷ lệ
NaBH4/Cu
2+
Kết quả đo SEM (Hình 3.11) của vật liệu được thực hiện để
xác định mức độ phân bố của hạt Cu và đo TEM để xác định
kích thước hạt nano Cu (Hình 3.12).
M1 M2
M3 M4 M5
6
Hình 3.12. Ảnh TEM của các
mẫu nano đồng theo tỷ lệ
NaBH4/Cu
2+
Hình 3.13. Phổ XRD của vật
liệu nano Cu khảo sát theo
nồng độ Cu0
Kết quả đo TEM cho thấy, khi tỉ lệ nồng độ NaBH4/Cu
2+
= 1
: 1 và 1,5: 1 thì các hạt nano Cu tạo ra có kích thước > 50 nm.
Các hạt phân bố khá đồng đều với kích thước khoảng 20- 50 nm
khi tỉ lệ NaBH4/Cu
2+
= 2 : 1. Các hạt nano có hiện tượng co
cụm lại thành từng đám, phân bố không đồng đều, kích thước >
50 nm khi tỉ lệ NaBH4/Cu
2+
= 3:1 và 4:1, phù hợp với kết quả
đo SEM. Để đáp ứng mục tiêu của luận án mẫu M3 (tỉ lệ
NaBH4/Cu
2+
= 2:1) đã được chọn làm mẫu đại diện.
3.1.2.2. Ảnh hưởng của nồng độ Cu0
Giản đồ XRD ở hình 3.1.3 của các mẫu nano Cu đều xuất
hiện các pic đặc trưng của vật liệu Cu. Các pic đặc trưng trên
giản đồ có cường độ rõ nét và độ bán rộng của đỉnh hẹp. Ngoài
ra, trên giản đồ XRD của vật liệu còn thấy xuất hiện các pic đặc
trưng của tinh thể CuO, Cu2O.
Hình 3.14. Ảnh SEM của vật
liệu nano Cu khảo sát theo
nồng độ Cu0
Hình 3.15. Ảnh TEM của vật
liệu nano Cu khảo sát theo
nồng độ Cu0
M1 M2
M
3
M4 M5
N1 N2
N3 N4 N5
N1 N2
N3 N4 N5
7
Kết quả đo SEM (Hình 3.14) vật liệu cho thấy, các hạt nano
Cu tạo thành phân bố với kích thước không đồng đều khi nồng
độ của Cu0 tăng. Khi nồng độ Cu0 = 2g/L, các hạt nano đồng
phân bố khá đồng đều với kích thước trong khoảng 20-40 nm.
Khi tăng nồng độ Cu0 = 3; 4g/L thì các hạt đồng tạo ra bắt đầu
có hiện tượng co cụm lại và tạo ra các hạt có kích thước > 50
nm, phân bố không đồng đều khi nồng độ Cu0 = 6; 7g/L, phù
hợp với kết quả đo TEM (Hình 3.15).
Cấu trúc vật liệu nano đồng ở tỷ lệ được lựa chọn cho thấy
các hạt nano Cu hình thành có bề mặt khá đồng nhất (ảnh SEM,
hình 3.16a), kích thước đồng đều trong khoảng 30 - 40 nm (ảnh
TEM, hình 3.16b) và có cấu trúc lập phương tâm mặt Fcc với
các đỉnh nhiễu xạ của các mặt phẳng mạng (111), (200) và
(220) tương ứng với góc 2θ = 43,3; 50,4 và 74,00 với cường độ
lớn (phổ XRD, hình 3.16c). Mẫu vật liệu này phù hợp với mục
tiêu của luận án và được lựa chọn cho các thử nghiệm tiếp theo.
a) b)
Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Cu-51
01-085-1326 (C) - Copper - Cu - Y: 16.13 % - d x by: 1. - WL: 1.5406 - Cubic - a 3.61500 - b 3.61500 - c 3.61500 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm-3m (225) - 4 - 47.2416 - I/Ic PDF 8.9 - F4
1)
File: ThuyVCNMT Cu-51.raw - Type: 2Th/Th locked - Start: 1.000 ° - End: 79.990 ° - Step: 0.030 ° - Step time: 0.3 s - Anode: Cu - WL1: 1.5406 - Generator kV: 40 kV - Generator mA: 40 mA - Creation: 06/10/2016 3:54:39 P
Left Angle: 42.490 ° - Right Angle: 44.350 ° - Obs. Max: 43.281 ° - d (Obs. Max): 2.089 - Max Int.: 1890 Cps - Net Height: 1668 Cps - FWHM: 0.231 ° - Raw Area: 852.6 Cps x deg. - Net Area: 440.4 Cps x deg.
L
in
(
C
p
s
)
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
2-Theta - Scale
1 10 20 30 40 50 60 70 80
d
=
2
.0
8
9
d
=
1
.8
0
8
d
=
1
.2
7
8
c)
Hình 3.16. Đặc trưng chi tiết mẫu vật liệu nano đồng N1 (a)
Ảnh SEM, (b) Ảnh TEM, (c) Giản đồ XRD
3.1.3. Chế tạo vật liệu nano sắt từ bằng phương pháp đồng kết tủa
3.1.3.1. Ảnh hưởng của nồng độ chất ổn định CMC
Kết quả khảo sát hình thái, kích thước và sự phân tán vật
liệu ở tỷ lệ giữa chất ổn định (CMC) và tiền chất (Fe3O4) lần
lượt là 1/1; 2/1; 3/1; 4/1 và 1/2 bằng phương pháp SEM và
TEM thể hiện trên hình 3.17 và 3.18. Kết quả chụp SEM cho
8
thấy, khi nồng độ CMC trong dung dịch cao thì các hạt nano sắt
thu được không đồng đều và kích thước hạt lớn, sự tập hợp giữa
các hạt nano dễ dàng xảy ra. Tại nồng độ CMC/Fe3O4 là 2/1 thì
các hạt nano sắt thu được có kích thước đồng đều nhất và đều
nhỏ hơn 20 nm.
Hình 3.17. Ảnh SEM cấu trúc
vật liệu nano sắt từ khảo sát
theo tỷ lệ CMC/ Fe3O4
Hình 3.18. Ảnh TEM cấu trúc
vật liệu nano sắt từ khảo sát
theo tỷ lệ CMC/Fe3O4
Kết quả chụp TEM cho thấy kích thước hạt nano thay đổi rất
khác nhau khi thay đổi nồng độ CMC. Khi tỷ lệ Fe3O4/CMC =
2:1 các hạt nano sắt thu được có kích thước nhỏ, đồng đều nhất
và nhỏ hơn 20nm, nằm trong giới hạn kích thước siêu thuận từ.
Vì vậy mẫu vật liệu có tỷ lệ Fe3O4/CMC = 2:1 (ký hiệu mẫu
FC21) được lựa chọn để khảo sát các yếu tố tiếp theo.
3.1.3.2. Kết quả đo hồng ngoại của vật liệu
Hình 3.19. Phổ hồng ngoại
của mẫu vật liệu Fe3O4 (a),
CMC (b), FC21 (c) và tổng
hợp phổ của ba mẫu (d)
Hình 3.20. Kết quả đo từ độ
của vật liệu FC21
9
Quan sát hình 3.19 ta thấy trên phổ IR của nano sắt từ về cơ
bản có các đỉnh giống các đỉnh của CMC và Fe3O4, điều này
chứng tỏ điều kiện tổng hợp vật liệu không phá vỡ trúc của
CMC. Do đó, phương pháp đồng kết tủa để tổng hợp vật liệu
phù hợp về độ tinh sạch cũng như hiệu suất.
3.1.3.3. Kết quả đo từ độ của vật liệu
Kết quả đo từ độ bão hòa thể hiện trên hình 3.20 cho thấy
các hạt nano sắt đều ở dạng siêu thuận từ. Từ độ bão hòa của
Fe3O4 và mẫu FC21 lần lượt là 68 emu/g và 49 emu/g tương
ứng với hàm lượng pha từ trong vật liệu. Kết quả chứng tỏ sự
tương tác bề mặt của pha từ với polyme làm giảm từ độ bão
hòa, phù hợp với kết quả phân tích TEM.
3.2. Đánh giá khả năng ức chế sinh trưởng và diệt vi tảo của
các loại vật liệu nano đã tổng hợp
3.2.1. Nghiên cứu lựa chọn nồng độ của ba loại vật liệu nano
Bảng 3.1. Kết quả sàng lọc tác dụng diệt VKL M. aeruginosa
KG của các loại vật liệu nano chế tạo
TT Mẫu
Nồng độ thử
nghiệm (mg/L)
Tác dụng
diệt VKL
1 Vật liệu nano Ag 3, 5 và 10 +++
3 Vật liệu nano Cu 3, 5 và 10 +++
5
Vật liệu nano
Fe3O4
5, 10, 100, 150 và
200
-
6 ĐC 0 -
Ghi chú: +++: tác dụng ức chế rất mạnh, ++: tác dụng ức chế mạnh, +: tác
dụng ức chế trung bình, -: không có tác dụng.
Hình 3.21. Ảnh hưởng của các vật liệu nano đến sinh trưởng
của chủng VKL M. aeruginosa KG sau 7 ngày.
Các thí nghiệm sàng lọc nồng độ được tiến hành nhằm đánh
giá nhanh tác dụng diệt VKL M. aeruginosa KG sau thời gian 7
10
ngày. Kết quả thu được ở bảng 3.1 và hình 3.21 cho thấy hai vật
liệu nano bạc và đồng ức chế sinh trưởng và phát triển của
chủng VKL M. aeruginosa KG sau 6 ngày thử nghiệm (Bảng
3.1 và hình 3.21a và b), trong khi đó vật liệu nano sắt từ không
có tác dụng diệt M. aeruginosa KG (Bảng 3.1 và hình 3.21c).
3.2.2. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng và
phát triển của VKL M. aeruginosa KG và tảo lục C. vulgaris
3.2.2.1. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng và
phát triển của VKL M. aeruginosa KG
Các thí nghiệm được tiến hành với các nồng độ vật liệu nano
bạc lựa chọn tăng dần từ 0; 0,001; 0,005; 0,01; 0,05; 0,1; 1ppm
trong 10 ngày. Các thông số đánh giá bao gồm: mật độ quang
học (OD), hàm lượng chla và mật độ tế bào vào các ngày 0, 2, 6
và 10 (Hình 3.22a, b). Độc tính của vật liệu nano bạc đến sinh
trưởng của VKL M. aeruginosa KG tính theo nồng độ vật liệu
bổ sung vào môi trường nuôi cấy gây ảnh hưởng đến 50% số
lượng cá thể (EC50) đạt 0,0075mg/L.
Kết quả mật độ tế bào và hàm lượng chla cho thấy, mật độ tế
bào và sinh khối trong mẫu đối chứng tăng tương ứng từ ngày
D0 (110.741 ± 6.317 tế bào/mL và 1,98 ± 0,06 µg/L tương ứng)
đến ngày kết thúc thúc thí nghiệm D10 (5.475.556 ± 541.274 tế
bào/mL và 23,4 ±2,96 µg/L tương ứng) (hình 3.23 a). Cả năm
dải nồng độ thử nghiệm đều gây độc tính cho tế bào tảo VKL M.
aeruginosa KG. Hiệu suất ức chế sinh trưởng (hình 3.23b) > 75%
chỉ xuất hiện ở 4 nồng độ thử nghiệm từ 0,01; 0,05; 0,1 và 1 ppm.
Hình 3.22. Ảnh hưởng của vật
liệu nano bạc đến sinh trưởng
của chủng VKL M.
aeruginosa KG sau 10 ngày
Hình 3.23. Ảnh hưởng của vật
liệu nano bạc tính theo mật độ
tế bào (a) và hiệu suất ức chế
sinh trưởng chủng VKL M.
11
tính theo mật độ quang (a) và
hàm lượng chla (b)
aeruginosa KG (b)
Kết quả chụp SEM cấu trúc bề mặt tế bào sau 48h tiếp xúc
với vật liệu nano bạc ở nồng độ 1 ppm thể hiện trong hình 3.24a
(mẫu đối chứng) và 3.24b (mẫu có bổ sung nano bạc với nồng
độ 1ppm). Ở mẫu đối chứng, tế bào VKL M. aeruginosa KG
hình tròn hoặc cầu với bề mặt ngoài tế bào trơn nhẵn, mịn màng
(hình 3.24a). Tế bào trở lên méo mó, co cụm lại sau khi tiếp xúc
với vật liệu nano bạc (hình 3.24b). Điều này chứng tỏ vật liệu
nano bạc đã làm thay đổi đáng kể hình thái của tế bào.
Hình 3.24. Kết quả chụp
SEM hình thái tế bào VKL M.
aeruginosa KG
Hình 3.26. Ảnh TEM cấu
trúc tế bào VKL M.
aeruginosa KG
Phương pháp kính hiển vi điện tử quét kết hợp EDX được
dùng để phân tích thành phần, trọng lượng và vị trí nano bạc
trên tế bào VLK M. aeruginosa KG. Kết quả ở hình 3.25 khẳng
định rằng nano bạc xuất hiện và bám trên bề mặt vi tảo với tỷ lệ
0,37% về trọng lượng.
Kết quả chụp TEM ở mẫu đối chứng (hình 3.26a) cho thấy,
siêu cấu trúc tế bào M. aeruginosa KG có thành tế bào rõ ràng,
các bào quan nằm gọn gàng trong tế bào. Khi tiếp xúc với vật
liệu nano bạc với nồng độ 1ppm sau thời gian 48h, tế bào VKL
đã bị phá huỷ (hình 3.26b). Điều này chứng tỏ vật liệu nano bạc
đã gây ảnh hưởng đến cấu trúc tế bào VKL M. aeruginosa KG.
Nguyên tố % trọng lượng % nguyên tử
C K 38,69 55,90
O K 30,59 33,18
Na K 1,95 1,47
Al K 6,02 3,87
Cu L 11,82 3,23
Ag L 0,37 0,06
a) b) a) b)
12
Totals 100,00
Hình 3.25. Phổ EDX và thành phần các nguyên tố xuất hiện
trên bề mặt tế bào VKL M. aeruginosa KG sau 48h tiếp xúc với
vật liệu nano bạc ở nồng độ 1ppm
3.2.2.2. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng và
phát triển của tảo lục Chlorella vulgaris
Các thí nghiệm được tiến hành các nồng độ vật liệu nano bạc
lựa chọn tăng dần từ 0,005; 0,01; 0,05; 0,1; 1 và 5 ppm trong 10
ngày. Các thông số đánh giá bao gồm: mật độ quang học (OD),
hàm lượng chla và mật độ tế bào vào các ngày 0, 2, 6 và 10
(Hình 3.27b). Độc tính của vật liệu nano bạc đến sinh trưởng
của tảo lục C. vulgaris tính theo nồng độ vật liệu bổ sung vào
môi trường nuôi cấy gây ảnh hưởng đến 50% số lượng cá thể
(EC50) đạt 0,017mg/L.
Hình 3.27. Ảnh hưởng của vật
liệu nano bạc đến sinh trưởng
của tảo lục C. vulgaris: a) OD
và b) mật độ tế bào.
Hình 3.28. Ảnh hưởng của vật
liệu nano bạc đến sinh trưởng
của tảo lục C. vulgaris theo
hiệu suất ức chế sinh trưởng
(a) và chla (b)
Sau 48h tiếp xúc với vật liệu nano bạc, mật độ tế bào giảm từ
195.925 ± 18.770 (D0) xuống còn 82.778 ± 41.384 (D10) tế
bào/mL. Ở nồng độ 0,005 và 0,01 ppm, AgNPs không ảnh hưởng
đến sự phát triển của C. vulgaris, mật độ tế bào sau 2, 6 và 10
ngày tăng tuyến tính với mẫu đối chứng. Kết quả phân tích hàm
lượng chla (Hình 3.28b) cho thấy, ở các mẫu đối chứng và mẫu
có bổ sung 0,005 và 0,01 ppm vật liệu nano bạc, hàm lượng chla
tăng dần từ 2,0604 ± 0,3505 µg/L (D0) và đạt giá trị cao nhất ở
ngày kết thúc thí nghiệm 27,285 ± 4,6893 µg/L (D10). Hiệu suất
ức chế sinh trưởng của các nồng độ vật liệu nano bạc sau 10 ngày
13
được trình bày ở hình 3.28a. Ở các nồng độ thử nghiệm từ 0,05
đến 1 ppm hiệu suất ức chế đạt > 90%.
Kết quả chụp SEM cấu trúc bề mặt tế bào sau 48h tiếp xúc với
vật liệu nano bạc ở nồng độ 1 ppm thể hiện trong hình 3.29a
(mẫu đối chứng) và 3.29b (mẫu có bổ sung nano bạc với nồng độ
1ppm). Ở mẫu đối chứng, tế bào tảo lục hình cầu hoặc elip, các tế
bào nhẵn và bào quan trong tế bào nhìn rõ (hình 3.29a). Tế bào
trở lên méo mó, bề ngoài tế bào sần sùi và co cụm sau khi tiếp
xúc với vật liệu nano bạc (hình 3.29b). Điều này chứng tỏ vật liệu
nano bạc đã làm thay đổi đáng kể hình thái của tế bào.
Hình 3.29. Kết quả chụp SEM
hình thái tế bào tảo lục C. vulgaris
Hình 3.31. Ảnh TEM