Đất hiếm là một loại khoáng sản đặc biệt, được nhiều nước trên thế
giới xếp vào loại khoáng sản chiến lược, có giá trị đặc biệt không thể thay
thế. Nguyên tố đất hiếm có vai trò rất quan trọng và là nhóm nguyên tố
chiến lược đối với sự phát triển của các ngành kỹ thuật mũi nhọn, công
nghệ cao như điện, điện tử, quang học, laser, vật liệu siêu dẫn, chất phát
quang. Do vậy, việc khai thác, chế biến, phân chia và làm giàu các nguyên
tố đất hiếm để ứng dụng trong thực tế là một nhu cầu không thể thiếu đối
với những nước có tiềm năng và trữ lượng đất hiếm lớn.
Việt Nam là một nước có tiềm năng lớn về đất hiếm với trữ lượng
khoảng 15 triệu tấn oxit đất hiếm. Các mỏ đất hiếm ở Việt Nam có quy mô
từ trung bình đến lớn với đặc điểm chủ yếu là nhóm nhẹ (nhóm lantan -
ceri) và hiện nay vẫn chủ yếu tập trung khai thác và xuất khẩu quặng thô
với giá thành thấp.
Với tính năng đặc biệt, polyme có chứa nhóm chức hydroxamic axit
(hay còn gọi là poly(hydroxamic axit) (PHA)) được các nhà khoa học trên
thế giới quan tâm nghiên cứu để phân tách riêng biệt các nguyên tố đất
hiếm. Tuy nhiên, ở Việt Nam chưa thấy công bố nào liên quan đến quá
trình tổng hợp PHA cũng như ứng dụng polyme này để phân tách riêng rẽ
nguyên tố đất hiếm nói chung, nguyên tố đất hiếm nhóm nhẹ nói riêng.
Do vậy nghiên cứu sinh lựa chọn đề tài luận án “Nghiên cứu chế tạo
và ứng dụng các polyme có nhóm chức thích hợp để tách một số nguyên tố
đất hiếm nhóm nhẹ” làm cơ sở để tổng hợp polyme có chứa nhóm chức
thích hợp sử dụng trong lĩnh vực tách riêng biệt các nguyên tố đất hiếm
nhóm nhẹ.
27 trang |
Chia sẻ: thientruc20 | Lượt xem: 595 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Nghiên cứu chế tạo và ứng dụng các polyme có nhóm chức thích hợp để tách một số nguyên tố đất hiếm nhóm nhẹ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------
HOÀNG THỊ PHƯƠNG
NGHIÊN CỨU CHẾ TẠO VÀ ỨNG DỤNG CÁC POLYME CÓ
NHÓM CHỨC THÍCH HỢP ĐỂ TÁCH MỘT SỐ NGUYÊN TỐ
ĐẤT HIẾM NHÓM NHẸ
NGƯỜI
Chuyên ngành: Hóa Hữu cơ
Mã số: 9.44.01.14
Văn Khôi
TÓM TẮT LUẬN ÁN TIẾN SỸ HÓA HỌC
HÀ NỘI - 2018
Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ
- Viện Hàn lâm Khoa học và Công nghệ Việt Nam.
Người hướng dẫn khoa học 1: GS.TS. Nguyễn Văn Khôi
Người hướng dẫn khoa học 2: TS. Trịnh Đức Công
Phản biện 1:
Phản biện 2:
Phản Biện 3:
Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp
Học viện, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm
Khoa học và Công nghệ Việt Nam vào hồi giờ ..’, ngày tháng
năm 2018
Có thể tìm hiểu luận án tại:
- Thư viện Học viện Khoa học và Công nghệ
- Thư viện Quốc gia Việt Nam
1
A. MỞ ĐẦU
1. Tính cấp thiết của luận án
Đất hiếm là một loại khoáng sản đặc biệt, được nhiều nước trên thế
giới xếp vào loại khoáng sản chiến lược, có giá trị đặc biệt không thể thay
thế. Nguyên tố đất hiếm có vai trò rất quan trọng và là nhóm nguyên tố
chiến lược đối với sự phát triển của các ngành kỹ thuật mũi nhọn, công
nghệ cao như điện, điện tử, quang học, laser, vật liệu siêu dẫn, chất phát
quang. Do vậy, việc khai thác, chế biến, phân chia và làm giàu các nguyên
tố đất hiếm để ứng dụng trong thực tế là một nhu cầu không thể thiếu đối
với những nước có tiềm năng và trữ lượng đất hiếm lớn.
Việt Nam là một nước có tiềm năng lớn về đất hiếm với trữ lượng
khoảng 15 triệu tấn oxit đất hiếm. Các mỏ đất hiếm ở Việt Nam có quy mô
từ trung bình đến lớn với đặc điểm chủ yếu là nhóm nhẹ (nhóm lantan -
ceri) và hiện nay vẫn chủ yếu tập trung khai thác và xuất khẩu quặng thô
với giá thành thấp.
Với tính năng đặc biệt, polyme có chứa nhóm chức hydroxamic axit
(hay còn gọi là poly(hydroxamic axit) (PHA)) được các nhà khoa học trên
thế giới quan tâm nghiên cứu để phân tách riêng biệt các nguyên tố đất
hiếm. Tuy nhiên, ở Việt Nam chưa thấy công bố nào liên quan đến quá
trình tổng hợp PHA cũng như ứng dụng polyme này để phân tách riêng rẽ
nguyên tố đất hiếm nói chung, nguyên tố đất hiếm nhóm nhẹ nói riêng.
Do vậy nghiên cứu sinh lựa chọn đề tài luận án “Nghiên cứu chế tạo
và ứng dụng các polyme có nhóm chức thích hợp để tách một số nguyên tố
đất hiếm nhóm nhẹ” làm cơ sở để tổng hợp polyme có chứa nhóm chức
thích hợp sử dụng trong lĩnh vực tách riêng biệt các nguyên tố đất hiếm
nhóm nhẹ.
2. Mục tiêu của luận án như sau:
Chế tạo thành công các polyme có nhóm chức thích hợp để tách các
nguyên tố kim loại đất hiếm nhóm nhẹ (La, Nd, Pr và Ce); đánh giá hiệu
quả tách các ion kim loại đất hiếm của các polyme tổng hợp được; đánh
giá khả năng phân tách riêng rẽ từng ion kim loại đất hiếm nhóm nhẹ trên
hệ cột trao đổi ion.
3. Nội dung nghiên cứu của luận án
- Nghiên cứu tổng hợp poly(hydroxamic axit) trên cơ sở acrylamit.
- Tổng hợp poly(hydroxamic axit) trên cơ sở acrylamit và natri vinyl
sunphanat.
- Nghiên cứu quá trình hấp phụ và giải hấp phụ các ion kim loại đất
hiếm phân nhóm nhẹ bằng PHA-PAM và PHA-VSA.
2
- Nghiên cứu tách riêng rẽ từng ion kim loại đất hiếm phân nhóm nhẹ
trong dung dịch tổng bắng PHA-PAM trên hệ cột trao đổi ion.
4. Cấu trúc luận án
Luận án có 138 trang, gồm các phần mở đầu, tổng quan, thực
nghiệm, kết quả và thảo luận, kết luận, những điểm mới của luận án, danh
mục các công trình khoa học của tác giả và tài liệu tham khảo, 45 hình và
45 bảng với 114 tài liệu tham khảo.
B. PHẦN NỘI DUNG CỦA LUẬN ÁN
CHƯƠNG I. TỔNG QUAN
Đã tổng quan tài liệu trong và ngoài nước về đất hiếm, các phương
pháp phân tách nguyên tố đất hiếm, tổng hợp và ứng dụng polyme có
nhóm chức thích hợp để tách các nguyên tố kim loại đất hiếm. Từ đó đưa
ra định hướng nghiên cứu của luận án.
CHƯƠNG II. THỰC NGHIỆM
2.1. Nguyên liệu, hóa chất, dụng cụ và thiết bị nghiên cứu
2.1.1. Nguyên liệu, hóa chất
Acrylamit(AM), Natri vinyl sunphonat (VSA), Amoni pesunphat
(APS),N, N’ - metylen bisacrylamit hydroxylamin hydroclorit (HA), Span
80, dung dịch Parafin, dầu diezel, dung dịch chuẩn La(NO3)3, Ce(NO3)3,
Pr(NO3)3, Nd(NO3)3. Dung dịch tổng đất hiếm nhóm nhẹ (phân tách từ đất
hiếm Đông Pao) gồm: La3+ 36,76%, Ce4+ 47,79%, Pr3+ 4,41%, Nd3+
11,03% được phân chia và cung cấp bởi Viện Công nghệ xạ hiếm. Hạt
nhựa Dowex HCR-s, hạt nhựa Amberlite IR 120.
Các hóa chất phân tích khác: nước cất, NaOH, NaHCO3,HCl, H2SO4,
CH3OH,C2H5OH, C20H14O4, HNO3, C6H14,CHCl3, H2C2O4, CH3COOH,
CH3COONa được sử dụng ngay không qua tinh chế lại.
2.1.2. Dụng cụ, thiết bị nghiên cứu
Thiết bị trùng hợp huyền phù dung tích 3 lít, hệ cột trao đổi ion, tủ
sấy chân không, bể điều nhiệt, cân phân tích, máy khuấy từ có gia nhiệt,
nhiệt kế, bình cầu, sinh hàn hồi lưu, cốc thuỷ tinh, bình tam giác,
pipetPhổ hồng ngoại, phân tích nhiệt trọng lượng TGA, kính hiển vi
điện tử quét FESEM, Kích thước trung bình của hạt, máy quang phổ phát
xạ Perkin Elmmer, thiết bị đo pH, thiết bị trùng hợp huyền phù dung tích 3
3
lít, Hệ cột trao đổi ion.
2.2. Nội dung nghiên cứu và phương pháp tiến hành
2.2.1. Tổng hợp poly(hydroxamic axit) trên cơ sở acrylamit
Quá trình trùng hợp polyacrylamit tạo lưới (PAM-gel) và chuyển hóa
PAM-gel thành PHA được thực hiện theo sơ đồ hình 2.4-2.6.
Hình 2.4. Sơ đồ quá trình tổng hợp PAM-gel
Lọc
- Acrylamit: C%
- MBA
- APS
Pha phân tán
V2 (ml)
Pha liên tục
V1 (ml)
- Dầu diezen
- Span 80
Tốc độ nạp liệu
10ml/phút
Bình phản ứng dung
tích 3 lít
PAM tạo lưới
Rửa bằng n-
hexan
PAM tạo lưới
(dạng hạt tròn đều)
Sấy ở 60oC trong 5 giờ
Khảo sát các yếu tố:
- Nồng độ AM
- Nhiệt độ và thời gian
- Hàm lượng MBA
- Hàm lượng ABS
- Hàm lượng Span 80
- Tốc độ khuấy
- Tỷ lệ pha
monome/pha dầu
PAM-gel
(10 g PAM + 50 g H2O)
Thêm dd NH2OH.HCl nồng độ 1-3.5
M, pH:10-14
Khuấy: 100 vòng/phút
Thời gian: 30 phút
Hỗn hợp phản ứng ở nhiệt độ T
(oC), thời gian t (phút)
Lọc
Rửa bằng nước
đến PH=7
Sấy: 60oC trong 5 giờ
Polyhydroxamic axit
(dạng hạt, tròn đều, màu vàng
nhạt)
Bình phản ứng dung tích 3 lít
Khảo sát các yếu tố
ảnh hưởng
- Ảnh hưởng của nhiệt
độ, thời gian
- pH môi trường
- Hàm lượng
NH2OH.HCl
4
Hình 2.6. Sơ đồ quá trình chuyển hóa PHA-gel thành PHA-PAM
2.2.2. Tổng hợp poly(hydroxamic axit) từ acrylamit và natri vinyl
sunphonat
2.2.2.1. Động học quá trình đồng trùng hợp acrylamit và natri vinyl
sunphonat
Với mục đích nghiên cứu hằng số đồng trùng hợp, các phản ứng
được khống chế độ chuyển hoá ≤ 10% (khống chế bằng cách trùng hợp ở
nồng độ rất loãng, thử nghiệm nhiều lần để khi độ chuyển hóa đạt ≤10%
thì tiến hành thí nghiệm). Tiến hành tổng hợp 5 mẫu copolyme với các tỷ
lệ mol AM/VSA ban đầu tương ứng là: 10/90; 30/70; 50/50; 70/30 và
90/10 trong khi các điều kiện khác được giữ nguyên không đổi.
2.2.2.2. Trùng hợp AM và VSA bằng phương pháp trùng hợp huyền phù
Quá trình trùng hợp được thực hiện tương tự như trường hợp trùng
hợp AM bằng phương pháp trùng hợp huyền phù, monomer trong pha
phấn tán lúc này là AM và VSA tỷ lệ AM/VSA là 60/40 phần khối lượng.
2.2.2.3. Chuyển hóa copolyme của AM và VSA thành poly(hydroxamic
axit)
Quá trình chuyển hóa copolyme của AM và VSA (P[AM-co-VSA]-
gel) thành poly(hydroxamic axit) (PHA-VSA) được tiến hành tương tự
như quá trình chuyển hóa PAM-gel thành PHA-PAM.
2.2.3. Hấp phụ và giải hấp các ion đất hiếm bằng PHA-PAM và PHA-
VSA
Hấp phụ: Lấy 0,15g PHA-PAM (hoặc PHA-VSA) cho vào bình phản
ứng chứa 50ml từng dung dịch ion La(III), Ce(IV), Pr(III) và Nd(III) với
nồng độ tương ứng, khuấy tại nhiệt độ phòng. Sau thời gian phản ứng xác
định nồng độ ion còn lại trong dung dịch bằng phương pháp ICP-OES.
* Nghiên cứu các yếu tố ảnh hưởng đến quá trình hấp phụ: pH đến
quá trình hấp phụ, thời gian, nồng độ ion kim loại ban đầu.
* Xây dựng đường đẳng nhiệt hấp phụ: Từ kết quả thu được khi
nghiên cứu ảnh hưởng của các yếu tố tới quá trình hấp phụ, xây dựng
phương trình đẳng nhiệt Langmuir .
2.2.4. Nghiên cứu tái sử dụng nhựa poly(hydroxamic axit)
Tiến hành 6 chu kì hấp phụ và giải hấp liên tiếp bằng 0,15g chất hấp
phụ trên. Sau mỗi chu kì, xác định phần trăm kim loại bị hấp phụ, phần
trăm kim loại được giải hấp và khối lượng chất hấp phụ bị hao hụt.
2.2.5. Hấp phụ trên cột các ion đất hiếm từ dung dịch tổng đất hiếm
nhóm nhẹ bằng PHA-PAM
5
Quá trình hấp phụ các ion kim loại đất hiếm nhóm nhẹ từ dung dịch
tổng và tách riêng rẽ từng ion kim loại được thực hiện theo sơ đồ hình 2.8.
Hình 2.8. Sơ đồ phân tách các ion kim loại đất hiếm từ dung dịch tổng đất
hiếm nhóm nhẹ bằng nhựa PHA
Rửa giải
HCl: 0.6M
Rửa giải
HCl: 0.1M
Rửa giải
HCl: 0.2M
Rửa giải
HCl: 0.4M
Dung dịch đất hiếm nhóm nhẹ
La3+, Nd3+, Pd3+ và Ce4+
- Nồng độ 500mg/l
-PH=6; đệm axetat 0.5 M
Hệ cột trao đổi ion
- Dcột : 20mm
- Lcột : 800mm
- Lnhựa : 500mm
Bơm định lượng
- Tốc độ: 130 ml/phút
Hấp phụ trong 180 phút Rửa bằng dung dịch HCl
0.5M
- Tốc độ dòng 3-7 ml/phút
- Vr/Vn: 3/1 – 18/1
Phân đoạn
giàu Nd3+
Phân đoạn giàu
Pd3+
Phân đoạn
giàu Ce4+
Hấp phụ và giải hấp từng phân đoạn lên hệ cột trao đổi ion
6
CHƯƠNG III. KẾT QUẢ VÀ THẢO LUẬN
3.1. Nghiên cứu tổng hợp poly(hydroxamic axit) trên cơ sở acrylamit
3.1.1. Nghiên cứu tổng hợp polyacrylamit tạo lưới (PAM-gel)
Trong nghiên cứu này pha liên tục được sử dụng là dầu diezen. Các
yếu tố ảnh hưởng đến tính chất sản phẩm được nghiên cứu như nhiệt độ
(70-95oC) và thời gian (60-240 phút), nồng độ monome (15-35%), hàm
lượng chất khơi mào APS (0,5-1,75), hàm lượng chất tạo lưới (7-11%), tỷ
lệ pha monome/pha dầu (1/5-1/3), hàm lượng chất ổn định huyền phù (0,1-
0,35) và tốc độ khuấy (200-40 vòng/phút). Kết quả nghiên cứu được trình
bày trong các bảng 3.1-3.6).
Bảng 3.1. Ảnh hưởng của nhiệt độ và thời gian phản ứng đến quá trình
trùng hợp
Nhiệt độ (oC)
Thời gian
(phút)
Gel1
(%)
D2TB
(m)
Đặc điểm sản phẩm
70
180 91,4 - Tạo hạt, kết khối
240 95 - Tạo hạt, kết khối
80
60 94,8 ~ 180 Tạo hạt, tách rời
90 98,6 187 Tạo hạt, tách rời, tròn đều
90 60 99,5 230 Tạo hạt, tách rời, tròn đều
95 60 - - Kết khối
Ở nhiệt độ 90oC sản phẩm tạo thành có dạng có dạng hạt tròn có kích
thước 230m. Vì vậy, chọn nhiệt độ 90oC và thời gian phản ứng 60 phút
là điều kiện tối ưu cho quá trình nghiên cứu.
Hình 3.1. Ảnh hưởng của nồng độ monome và thời gian đến hàm lượng
gel
1Hàm lượng phần gel của sản phẩm
2 Đường kính hạt trung bình của sản phẩm
0 20 40 60 80 100
H
àm
l
ư
ợ
n
g
p
h
ần
g
el
(
%
)
Thời gian phản ứng (phút)
35%
30%
25%
20%
15%
7
Khi nồng độ monome tăng từ 15% đến 30% thì hàm lượng phần gel
tăng và thời gian phản ứng giảm. Tuy nhiên khi nồng độ monome cao
(mẫu 35%) quá trình trùng hợp diễn ra rất nhanh, khó điều khiển quá trình
phản ứng. Do vậy chọn nồng độ monome là 30% làm điều kiện cho nghiên
cứu tiếp theo.
Bảng 3.1. Ảnh hưởng của hàm lượng chất khơi mào đến hàm lượng phần
gel và độ trương của PAM-gel
Nồng độ KPS, % 0,5 0,75 1,0 1,25 1,5 1,75
Hàm lượng phần
gel, %
93,2 96,8 99,5 98,4 98,0 97,3
Độ trương, g/g 3,2 3,9 4,7 4,2 3,8 3,6
Kết quả nghiên cứu cho thấy hàm lượng chất khơi mào KPS tối ưu
sử dụng để tổng hợp PAM-gel là 1,0%.
Bảng 3.3. Ảnh hưởng của hàm lượng chất tạo lưới tới độ trương và hàm
lượng phần gel của PAM-gel
Hàm lượng MBA (%) 7 8 9 10 11
Độ trương (g/g) 6,2 5,8 5,5 4,7 4,1
Hàm lượng phần gel (%) 98 98 98,4 99,5 99,5
Việc tăng hàm lượng chất tạo lưới từ 7-11% sẽ làm giảm độ trương
từ 6,2 - 4,1 g/g. Vì vậy, chọn nồng độ chất tạo lưới MBA là 10% để nghiên
cứu tiếp theo.
Bảng 3.4. Ảnh hưởng của tỉ lệ pha monome/pha dầu tới tính chất hạt
Tỉ lệ pha phân
tán/pha dầu
Kích thước hạt
trung bình DTB(m)
Đặc điểm sản phẩm và khả năng
phân tách hạt
1/5 225 Hạt tròn, đều nhau
1/4 230 Hạt tròn, đều nhau
1/3 - Hạt một phần bị kết khối
Ở tỷ lệ pha monome/pha dầu 1/4 thì quá trình tạo hạt tốt hơn, phân
bố kích thước hạt đồng đều hơn so với các tỷ lệ còn lại. Do vậy chọn tỉ lệ
pha monome/pha dầu diezen là 1/4 làm điều kiện nghiên cứu tiếp theo.
Bảng 3.5. Ảnh hưởng của nồng độ chất ổn định huyền phù tới tính chất hạt
Hàm
lượng
Span 80
(%)
Hàm
lượng
gel, %
Kích thước hạt
trung bình
DTB(m)
Đặc điểm sản phẩm và khả
năng phân tách hạt
8
0,10 99,2 - Khối, hạt không tròn
0,20 99,6 - Khối, hạt không tròn
0,30 99,5 230 Tạo hạt tròn, đồng đều
0,35 98,5 - Tạo hạt và một phần bị nhũ hóa
Từ bảng 3.5 cho thấy, với hàm lượng span là 0,3% so với lượng dung
môi thì sản phẩm thu được là các hạt tròn tách rời nhau và có độ đồng đều
của hạt sản phẩm.
Bảng 3.6. Ảnh hưởng của tốc độ khuấy tới phân bố kích thước hạt
Tốc độ khuấy
(vòng/phút)
Phân bố kích thước hạt (%)
500(m)
200 7 55 38
300 4 92 4
400 38 57 5
Với tốc độ 300 vòng/phút, sản phẩm tạo thành đồng đều hơn, kích
thước hạt tập trung trong khoảng từ 100-500m (có đường kính trung bình
khoảng 230m) lên đến 92%.
➢ Một số đặc trưng lý hóa và tính chất sản phẩm PAM-gel
Đặc trưng tính chất sản phẩm được đánh giá thông qua khoảng phân
bố kích thước hạt, ảnh SEM bề mặt hạt, phổ IR và độ bền nhiệt TGA. Kết
quả được trình bày trong hình 3.2-3.3 và bảng 3.7-3.8.
Hình 3.1. Sự phân bố kích thước hạt
PAM-gel
Hình 3.2. Hình thái học bề mặt hạt
PAM-gel
9
Bảng 3.2. Trị số dao động liên kết của các nhóm chức trong PAM-gel
Dải số sóng (cm-1) Liên kết Nhóm chức, hợp chất
3369,36 N-H Amin bậc 1 (-NH2)
2925,43 C-H Alkyl (-CH2)
1660,61 C=O Cacbonyl (-C=O)
1452 C-N Nhóm amit 2
1413 -CH2 Dao động biến dạng của nhóm CH2
Bảng 3.3.Dữ liệu phân tích nhiệt TGA của PAM-gel
Giai đoạn phân
hủy
Khoảng nhiệt độ,
oC
TMax Mất khối lượng, %
1 Tp-190 248 2,22
2 190-340 390 24,43
3 340-450 555 25,80
Như vậy, điều kiện tối ưu để tổng hợp PAM-gel là: nồng độ monome
AM 30 %, nhiệt độ 90 oC trong thời gian 60 phút, nồng độ chất khơi mào
APS 0.1 %, chất tạo lưới MBA 10 %, tỷ lệ pha monome/pha dầu 1/4, hàm
lượng chất ổn định huyền phù 0,3 % và tốc độ khuấy 300 vòng/phút. Ở
điều kiện này polyme PAM-gel thu được dạng hạt tròn đều, tách rời nhau,
kích thước hạt phân bố tập trung ở 230 µm, độ trương cân bằng 4,7 g/g và
hàm lượng gel 99,5 %.
3.1.2. Tổng hợp poly(hydroxamic axit) trên cơ sở chuyển hóa PAM-gel
Để nghiên cứu quá trình chuyển hóa PAM-gel thành
poly(hydroxamic axit) (PHA-PAM) bằng hyroxylamin, sản phẩm được
sàng phân loại với cỡ hạt qua sàng có đường kính từ 100 – 500µm, độ ẩm
< 5%. Tiến hành nghiên cứu các yếu tố ảnh hưởng đến quá trình chuyển
hóa nhóm acrylamit thành nhóm hydroxamic axit như nhiệt độ (25-40oC),
thời gian (0-24 giờ), pH (pH=10-14) và nồng độ NH2OH.HCl (1,0-3,5M).
Kết quả nghiên cứu được trình bày trong hình 3.6 và các bảng 3.9-3.10).
Hình 3.6. Ảnh hưởng của nhiệt độ và thời gian đến hàm lượng nhóm chức
0
2
4
6
8
10
12
0 6 12 18 24
-C
O
N
H
O
H
(
m
m
o
l/
g
)
Thời gian (h)
25 0C
30 0C
40 0C
10
Từ hình 3.6, ta thấy, khi nhiệt độ tăng từ 250C đến 300C, hàm lượng
nhóm chức –CONHOH cũng tăng từ 9,8 đến 11,4 mmol/g sau 24 giờ.
Bảng 3.9. Ảnh hưởng của pH đến hàm lượng nhóm chức
pH -CONH2(mmol/g)
- COOH
(mmol/g)
- CONHOH(mmol/g)
10 12,93 1,25 1,14
11 12,57 1,50 1,25
12 8,54 1,75 5,03
13 3,94 1,70 9,68
14 2,30 1,68 11,34
Từ bảng 3.9 cho thấy pH trong khoảng 10-11 quá trình biến tính xảy
ra rất chậm (hàm lượng nhóm –CONHOH thấp). Trong khoảng pH = 12-
14 hàm lượng nhóm chức CONHOH tăng dần và đạt lớn nhất tại pH = 14.
Bảng 3.10. Ảnh hưởng của nồng độ NH2OH.HCl
Nồng độ
NH2OH.HCl(M)
-CONH2
(mmol/g)
-COOH
(mmol/g)
-CONHOH
(mmol/g)
1,0 5,38 1,45 8,49
2,0 4,39 1,57 9,36
3,0 3,09 1,61 10,62
3,3 2,30 1,68 11,34
3,5 2,26 1,72 11,34
Qua bảng 3.10 cho thấy ở nồng độ NH2OH.HCl 3.3M thì hàm lượng
nhóm chức –CONHOH đạt cao nhất.
➢ Một số đặc trưng lý hóa và tính chất của sản phẩm PHA-PAM
Đặc trưng tính chất của PHA-PAM được đánh gia thông qua phổ
hồng ngoại FTIR, phân tích nhiệt trọng lượng và ảnh SEM hình thái học
bề mặt. Kết quả được trình bày trong bảng 3.11-3.12 và hình 3.9-3.10.
Bảng 3.4. Trị số dao động liên kết của các nhóm chức trong PHA-PAM
Dải số sóng (cm-1) Liên kết Nhóm chức, hợp chất
3436-3190 N-H, -OH Amin bậc 1 (-NH2), -COOH
2928 C-H Alkyl (-CH2)
2857 C=N -CONHOH (dạng enol)
1668 C=O Cacbonyl (-C=O)
1009 N-O -CONHOH
11
Hình 3.9. Giản đồ phân tích nhiệt trọng
lượng của PHA-PAM
Hình 3.10. Ảnh SEM của
PHA-PAM
Bảng 3.12. Dữ liệu phân tích nhiệt TGA của PHA-PAM
Giai đoạn
Khoảng nhiệt độ,
oC
TMax, oC Mất khối lượng, %
1 Tp-220 186 9,33
2 220-340 307 17,81
3 340-450 385 35,15
Như vậy điều kiện tối ưu để chuyển hóa PAM-gel thành PHA-PAM
là: quá trình chuyển hóa được thực hiện trong môi trường hydroxylamin
hydroclorit nồng độ 3,3 M, ở nhiệt độ 30 oC trong khoảng thời gia 24 giờ
tại pH=14. PHA-PAM thu được có chứa hàm lượng nhóm -CONH2 2,3
mmol/g, nhóm -COOH 1,68 mmol/g và nhóm -CONHOH 11,34 mmol/g.
3.2. Tổng hợp poly(hydroxamic axit) từ acrylamit và natri
vinylsunfonat
3.2.1.Tổng hợp copolyme của acrylamit và natri vinyl sunphonat
3.2.1.1. Ảnh hưởng của nhiệt độ, thời gian và nồng độ chất khơi mào đến
quá trình phản ứng
Để nghiên cứu ảnh hưởng của nhiệt độ đến quá trình phản ứng đồng
trùng hợp acylamit và natri vinyl sunfonat, phản ứng được tiến hành với
nồng độ tổng hai loại monome là 0,5M, tỉ lệ VSA/AM = 6/4 (theo khối
lượng), tốc độ khuấy 70 vòng/phút, nhiệt độ 65-75oC, thời gian 60-240
phút và nồng độ chất khơi mào 0,5 – 1,2%. Kết quả được trình bày trên
hình 3.10-3.11.
12
Hình 3.10. Ảnh hưởng của nhiệt
độ và thời gian tới độ chuyển hóa
Hình 3.11. Ảnh hưởng của nồng độ
chất khơi mào tới độ chuyển hóa
Lựa chọn điều kiện phản ứng cho nghiên cứu tiếp theo là: nhiệt độ
70oC, thời gian 180 phút và nồng độ chất khơi mào 1%.
3.2.1.3. Xác định hằng số đồng trùng hợp của AM và VSA
Kết quả xác định các hệ số trung gian và trong phương trình
Kelen – Tudos sử dụng kết quả phân tích thành phần copolyme bằng
phương pháp phân tích nguyên tố, kết quả được trình bày trong bảng 3.14.
Bảng 3.14. Kết quả xác định hệ số và
Mẫu
M1 0,111 0,175 0,07 -0,52
0,88
0,07 -0,55
M2 0,429 0,630 0,29 -0,25 0,25 -0,21
M3 1,000 1,070 0,93 0,07 0,51 0,04
M4 1,500 1,580 1,42 0,55 0,97 0,40
M5 2,333 2,380 2,29 1,35 0,72 0,43
M6 9,000 7,310 11,08 7,77 0,93 0,65
Từ phương trình = 1,3883 – 0,6197 với α = 0,88 ngoại suy tới:
= 0 suy ra rVSA = 0,547, = 1 suy ra rAM = 0,768.
3.2.2. Tổng hợp copolyme của acrylamit- natri vinyl sunfonat bằng
phương pháp huyền phù
Trong nghiên cứu này pha liên tục được sử dụng là dầu diezen. Các
yếu tố ảnh hưởng đến tính chất sản phẩm được nghiên cứu như nhiệt độ
(70-90oC) và thời gian (60-240 phút), hàm lượng chất tạo lưới (7-11%),
nồng độ monome (4,63-40%), tỷ lệ pha monome/pha dầu (1/5-1/3), hàm
lượng chất ổn định huyền phù (0,1-0,35) và tốc độ khuấy (200-40
vòng/phút). Kết quả nghiên cứu được trình bày trong các bảng 3.15-3.20.
0
20
40
60
80
100
0 60 120 180 240
Đ
ộ
c
h
u
yể
n
h
ó
a
(%
)
Thời gian (phút)
65 oC
70 oC
75 oC
0
20
40
60
80
100
0 60 120 180 240
0,50%
0,75%
1,00%
1,20%Đ
ộ
ch
u
yể
n
h
ó
a
(%
)
Thời gian
(phút)
x
M
M
=
][
][
2
1
y
Md
Md
=
2
1
y
x
F
2
=
y
yx
G
)1( −
=
maxminFF=
F
F
+
=
F
G
+
=
13
Bảng 3.15. Ảnh hưởng của nhiệt độ và thời gian phản ứng
Nhiệt độ
(oC)
Thời gian
(phút)
Gel3
(%)
D4TB
(m)
Đặc điểm sản phẩm
700C