Luận văn Các công trình khoa học đa được công bố có liên quan đến luận án tiến sỹ toán học

Trong các ngành Khoa học ứng dụng như Vật lý, Hóa học, Cơ học, Kỹ thuật, . thường xuất hiện các bài toán biên phi tuyến rất phong phú và đa dạng. Đây chính là nguồn đề tài không bao giờ cạn mà rất nhiều các nhà toán học từ trước đến nay quan tâm nghiên cứu. Hiện nay, với những thành tựu của Toán học hiện đại, nhiều công cụ sâu sắc dựa vào nền tảng của Giải tích hàm đã xâm nhập vào từng bài toán biên phi tuyến cụ thể ở một mức độ nào đó. Tuy nhiên, nhìn một cách tổng quát, chúng ta vẫn chưa có một phương pháp toán học chung để giải quyết cho mọi bài toán biên phi tuyến. Do đó còn rất nhiều các bài toán biên phi tuyến vẫn chưa giải hoặc giải được một phần tương ứng với số hạng phi tuyến cụ thể nào đó

pdf99 trang | Chia sẻ: duongneo | Lượt xem: 911 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Các công trình khoa học đa được công bố có liên quan đến luận án tiến sỹ toán học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nghiên cúu sinh BÙI TIẾN DŨNG CÁC CÔNG TRÌNH KHOA HỌC ĐÃ ĐƯỢC CÔNG BỐ CÓ LIÊN QUAN ĐẾN LUẬN ÁN TIẾN SỸ TOÁN HỌC Người hướng dẫn khoa học : TS. NGUYỄN THÀNH LONG PGS.TS. NGUYỄN HỘI NGHĨA TP. HỒ CHÍ MINH – 2005 LỜI CAM ĐOAN  Tôi xin cam đoan đây là công trình nghiên cứu của tôi. Các kết quả và số liệu trong luận án là trung thực và chưa từng được ai công bố trong bất kỳ một công trình nào khác. Tác giả luận án Lời cảm ơn     Con xin ghi tạc công ơn sinh thành và dưỡng dục của Cha mẹ để con khôn lớn nên người. Tôi xin ghi ơn tất cả Quý Thầy, Cô đã dạy cho tôi từ thuở ấu thơ cho đến ngày tôi được thành đạt hôm nay. Kính gửi đến TS. Nguyễn Thành Long, Khoa Toán – Tin của Trường Đại học Khoa học Tự Nhiên Thành phố Hồ Chí Minh, cùng PGS. TS. Nguyễn Hội Nghĩa, Ban Sau Đại Học của Đại Học Quốc Gia Thành phố Hồ Chí Minh, lòng biết ơn và tất cả những tình cảm tốt đẹp nhất vì sự tận tụy dạy dỗ của Quý Thầy đã dành cho tôi, kể cả những nghiêm khắc cần thiết của Quý Thầy trong việc hướng dẫn cho tôi học tập và nghiên cứu khoa học, nhằm giúp tôi được nên người. Tôi cũng xin bày tỏ lòng biết ơn đến Quý Thầy phản biện độc lập luận án, Quý Thầy trong Hội đồng đánh giá luận án tiến sỹ cấp Bộ môn, Hội đồng đánh giá luận án tiến sỹ cấp Nhà nước, đã đóng góp nhiều ý kiến quý báu, giúp cho tôi hoàn thành tốt đẹp luận án này. Chân thành cảm ơn Quý Thầy, Cô cùng các Chuyên viên ở Vụ Đại học và Sau Đại học của Bộ Giáo Dục và Đào Tạo, và ở Phòng Sau Đại học của Truờng Đại học Sư Phạm Thành phố Hồ Chí Minh đã tận tình giúp cho tôi hoàn tất các thủ tục học tập và bảo vệ luận án tiến sỹ. Tôi cũng xin chân thành cảm ơn Ban Giám Hiệu Trường Đại học Kiến Trúc Thành phố Hồ Chí Minh cùng Qúy Thầy, Cô đồng nghiệp thuộc Khoa Khoa học Cơ Bản đã độâng viên và tạo nhiều điều kiện thuận lợi cho tôi hoàn tất việc học tập, nghiên cứu khoa học. Đặc biệt xin được cảm ơn Thạc sỹ Ninh Quang Thăng, Khoa Trưởng Khoa Khoa Học Cơ Bản của Trường Đại học Kiến Trúc Thành phố Hồ Chí Minh, người lãnh đạo, người anh, và là đồng nghiệp đã luôn sát cánh bên tôi, giúp đỡ rất nhiều cho tôi trong sự nghiệp giảng dạy, quản lý tổ chức để cho tôi tập trung hoàn thành được luận án tiến sỹ này. Sau cùng, tôi xin gửi tất cả những tình cảm yêu thương và lòng biết ơn đối với gia đình, nơi đã gửi gắm ở tôi niềm tin, nơi cho tôi những an lành và sức mạnh, nhờ đó tôi có thể vượt qua khó khăn, trở ngại để học tập, nghiên cứu và hoàn thành luận án tiến sỹ của mình. Bùi Tiến Dũng PHẦN MỞ ĐẦU Trong các ngành Khoa học ứng dụng như Vật lý, Hóa học, Cơ học, Kỹ thuật, ... thường xuất hiện các bài toán biên phi tuyến rất phong phú và đa dạng. Đây chính là nguồn đề tài không bao giờ cạn mà rất nhiều các nhà toán học từ trước đến nay quan tâm nghiên cứu. Hiện nay, với những thành tựu của Toán học hiện đại, nhiều công cụ sâu sắc dựa vào nền tảng của Giải tích hàm đã xâm nhập vào từng bài toán biên phi tuyến cụ thể ở một mức độ nào đó. Tuy nhiên, nhìn một cách tổng quát, chúng ta vẫn chưa có một phương pháp toán học chung để giải quyết cho mọi bài toán biên phi tuyến. Do đó còn rất nhiều các bài toán biên phi tuyến vẫn chưa giải hoặc giải được một phần tương ứng với số hạng phi tuyến cụ thể nào đó. Trong luận án này chúng tôi sẽ khảo sát một số bài toán biên có liên quan đến nhiều vấn đề trong các ngành Khoa học ứng dụng. Chẳng hạn các phương trình sóng phi tuyến liên kết với các loại điều kiện biên khác nhau xuất hiện trong các bài toán mô tả dao động của một vật đàn hồi ( một dây hoặc một thanh đàn hồi) với các ràng buộc phi tuyến ở bề mặt và tại biên, hoặc mô tả sự va chạm của một vật rắn với một thanh đàn nhớt tuyến tính trên một nền cứng hoặc một nền đàn nhớt với các ràng buộc đàn hồi phi tuyến ở bề mặt, các ràng buộc liên hệ với lực cản ma sát nhớt. Công cụ để khảo sát các bài toán biên trên được chúng tôi sử dụng và trình bày trong luận án là các phương pháp của Giải tích hàm phi tuyến như: phương pháp Galerkin, phương pháp compact và đơn điệu, phương pháp xấp xỉ tuyến tính liên hệ với các định lý về điểm bất động, phương pháp tiệm cận ... Ngoài phần tổng quan ở chương mở đầu, kết quả chính của luận án sẽ được trình bày trong hai chương sau: Chương 1: Trong chương này, chúng tôi quan tâm đến một dạng phương trình sóng phi tuyến có chứa toán tử Kirchhoff ,0 ),1,0(),,,,,,() ,( 22 TtxuuuutxfuutBu txxtt  (0.1) liên kết với điều kiện biên hỗn hợp không thuần nhất ,(t)),1( ),(),0(),0( 100 gtutgtuhtux  (0.2) và điều kiện đầu ),(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.3) trong đó 1010 , , ~ ,~ , , gguufB là các hàm cho trước sẽ được giả thiết ở phần sau và 00 h là hằng số cho trước. Trong phương trình (0.1) các số hạng phi tuyến ),( 2 utB  và ),,,,,( 2 uuuutxf t  phụ thuộc vào tích phân .),()( 1 2 2       N i i dxtx x u tu (0.4) Phương trình (0.1) được tổng quát hóa từ phương trình mô tả dao động của một dây đàn hồi (Kirchhoff [16]):  ,0 , 0 ,),( y u 2 0 2 0 TtLxudyty L E Phu xx L tt             (0.5) ơÛ đây u là độ võng,  là khối lượng riêng, h là thiết diện, L là chiều dài sợi dây ở trạng thái ban đầu, E là môđun Young và 0P là lực căng lúc ban đầu. Tuy nhiên, trong nhiều tài liệu sau này ( xem [13, 15, 23, 24, 30, 39]) vẫn gọi phương trình thuộc dạng (0.5) là phương trình sóng chứa toán tử Carrier hoặc ghép tên chung và gọi là phương trình sóng chứa toán tử Kirchhoff-Carrier. Thật ra giữa hai bài báo gốc của Kirchhoff (1876)[16] và của Carrier (1945)[7] có sự khác biệt, bởi vì chúng tôi tìm thấy trong [7] của Carrier đã công bố năm 1945 thì phương trình không phải thuộc dạng (0.5), mà lại là ,0 , 0 ,),( 0 2 10 TtLxudytyuPPu xx L tt           (0.6) trong đó 10 , PP là các hằng số dương. Trong một số trường hợp riêng của B và f, bài toán Cauchy hay hỗn hợp cho phương trình (0.1) đã được nghiên cứu bởi nhiều tác giả như Ebihara, Medeiros và Miranda[13]; Pohozaev[34]; Frota[14]; Larkin[18]; Santos[36], Tucsnak[38]; Santos-Fereira-Saposo[37]; Yamada[39]. Trong hai công trình gần đây (xem [31, 32]), các tác giả Medeiros, Limaco, Menezes đã cho một tổng quan các kết quả về khía cạnh toán học có liên quan đến mô hình Kirchhoff-Carrier. Trong [14], Frotta chú ý nghiên cứu phương trình sóng cho miền n-chiều nIR ,0,),,() ,( 2 TtxtxfuuxButt  (0.7) liên kết với điều kiện biên Dirichlet thuần nhất và điều kiện đầu. Thay vì xét (0.7), Larkin[18] nghiên cứu phương trình sóng ,0 ,),,(),,())( ,,( 2 TtxtxfutxgututxBu ttt  (0.8) liên kết với điều kiện biên Dirichlet thuần nhất và điều kiện đầu, với    .),()( 22 dxtxutu Trong [37], các tác giả Santos-Ferreira-Pereira-Raposo nghiên cứu bài toán với phương trình sóng ,0 ),1,0(,0)()( 2 TtxufuuuBu ttt  (0.9) liên kết với điều kiện biên hỗn hợp phi tuyến và điều kiện đầu. Trong [38], Tucsnak nghiên cứu bài toán ,0 , 10 0,),( 1 0 2              txudytyy u bau xxtt (0.10) ,0 ,0),1( ),1( ,0),0(  ttututu tx  (0.11) ),(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.12) trong đó 0 ,0 ,0  ba là các hằng số cho trước. Trong trường hợp này, bài toán (0.10) - (0.12) mô tả sự kéo giãn sợi dây. Trong [30] Medeiros đã khảo sát bài toán )1.0( - )3.0( với ,)( 2buuff  ở đây b là một hằng số dương cho trước,  là một tập mở bị chận của .3IR Trong [15], Hosoya và Yamada đã xét bài toán với ,)( uuuff   trong đó  > 0 ,   0 là các hằng số cho trước. Trong [8] Dmitriyeva đã nghiên cứu bài toán ),(0,),( ),,( . 22 TtxtxFuuuuu ttt   (0.13)       2 1 2 2 0 ,0 i i i v x u u trên , (0.14) ),(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.15) trong đó, ),,0(),0(   vectơ ),( 21 vvv  là pháp tuyến đơn vị trên biên  hướng ra ngoài, ,6/22h  với ,h là các hằng số dương. Trong trường hợp này, bài toán (0.13)-(0.15) mô tả dao động phi tuyến của một bản hình vuông có tải trọng tĩnh. Trong [26], N.T Long và các tác giả đã nghiên cứu sự tồn tại và duy nhất nghiệm của bài toán ),,0(),( ),,( )(. 122 TtxtxFuuuuBuu tttt    (0.16) 0 ,0     v u u trên  , (0.17) ),(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.18) trong đó  > ,0  > ,0 0 <  < 1 là các hằng số cho trước và  là một tập mở bị chận của .nIR Bằng cách tổng quát kết quả của [8, 26], các tác giả N.T Long và T.M. Thuyết [27] đã xét bài toán ),,0(),( ),,(),( )(. 22 TtxtxFuufuuBuu ttt   (0.19) 0 ,0     v u u trên  , (0.20) ).(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.21) Trong [9], Alain Phạm đã nghiên cứu sự tồn tại và dáng điệu tiệm cận khi   0 của nghiệm yếu của bài toán )1.0( - )3.0( với B  1 liên kết với điều kiện biên thuần nhất Dirichlet ,0),1( ),0(  tutu (0.22) ở đây số hạng phi tuyến có dạng ).,( 1 utff  Sau đó, trong [10] Alain P.N. Định và N.T. Long đã xét bài toán )1.0( - )3.0( với B  1 và số hạng phi tuyến có dạng ),,( 1 tuutff  (0.23) Trong [21] N.T. Long và T.N. Diễm đã khảo sát phương trình sóng phi tuyến ,0),1,0(),,,,,( ),,,,( 1 Ttxuuutxfuuutxfuu txtxxxtt   0.24) liên kết với điều kiện đầu (0.3) và điều kiện biên hỗn hợp thuần nhất 0,),0(),1(),0(),0( 10  tuhtutuhtu xx (0.25) trong đó 10 , hh là các hằng số dương cho trước. Trong trường hợp )),0[]1,0([ 32 IRCf  và ),),0[]1,0([ 311 IRCf  trong [12] thu được kết quả thu được liên quan đến khai triển tiệm cận của nghiệm bài toán nhiễu đến cấp 2 theo một tham số  đủ nhỏ. Kết quả này tiếp tục được mở rộng trong [24] với phương trình sóng phi tuyến có chứa toán tử Kirchhoff: ),,,,,( ),,,,( )] (.) ([ 1 2 1 2 0 txtx xxxxtt uuutxfuuutxf uuBuBbu     (0.26) liên kết với điều kiện )3.0( và )22.0( trong đó 00 b là hằng số cho trước và 0 ,0 ),( ),( 1 1 1 2   BBIRCBIRCB là các hàm cho trước. Trong chương này, chúng tôi tập trung giải quyết hai vấn đề: Vấn đề thứ nhất: Chúng tôi liên kết bài toán với một dãy qui nạp tuyến tính hội tụ mạnh trong các không gian hàm thích hợp và chứng minh sự tồn tại địa phương và duy nhất nghiệm của bài toán bằng phương pháp Galerkin thông dụng kết hợp với phương pháp compact. Chú ý rằng phương pháp tuyến tính hóa trong chương này cũng như trong các bài báo [6, 10, 21, 23, 24, 33] không thể sử dụng trong các bài báo [3, 5, 9, 11, 12, 13, 19, 20, 26, 27, 29, 30, 34] Vấn đề thứ hai: Chúng tôi khảo sát bài toán nhiễu ) ,,,,,(.ε) ,,,,,( )] ,(.ε) ,([ 2 1 2 2 1 2 xtxxtx xxxxtt uuuutxfuuuutxf uutButBu   (0.27) và tìm cách khai triển tiệm cận của nghiệm yếu ),(ε txu đến cấp N+1 theo một tham số bé . Trong vấn đề thứ nhất, trước hết chúng tôi chứng minh sự tồn tại địa phương và duy nhất nghiệm của bài toán (0.1) - (0.3) tương ứng với điều kiện biên hỗn hợp thuần nhất ,0 ),1,0( ),,,,,,() ( 22 TtxuuuutxfuuBu xtxxxxtt  (0.28) ,0),1(),0(),0( 0  tutuhtux (0.29) ),(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.30) trong đó 10 ~ ,~ , , uufB là các hàm cho trước. Ở đây, số hạng phi tuyến ở vế phải của (0.28) xác định bởi hàm f được giả sử rằng )]1,0([ 30   IRIRIRCf và thêm một số điều kiện phụ. Kế tiếp chúng tôi mở rộng việc khảo sát cũng với phương trình sóng phi tuyến có chứa toán tử Kirchhoff-Carrier nhưng lại liên kết với điều kiện biên hỗn hợp không thuần nhất như sau: ,0),1,0(),,,,,,() ,( 22 TtxuuuutxfuutBu xtxxxxtt  (0.31) ,(t)),1( ),(),0(),0( 100 gtutgtuhtux  (0.32) ),(~)0,( ),(~)0,( 10 xuxuxuxu t  (0.33) trong đó 1010 , , ~ ,~ , , gguufB là các hàm cho trước sẽ được giả thiết sau. Bằng việc đặt ẩn phụ thích hợp, chúng tôi đưa bài toán (0.31) - (0.33) về bài toán có điều kiện biên thuần nhất thuộc dạng (0.28) - (0.30) với sự điều chỉnh lại các hàm 10 ~ ,~ , , uufB trong (0.28) - (0.30) thành các hàm 10 ~ ,~ , ~ , ~ vvfB . Tuy nhiên để giải bài toán (0.31) - (0.33) thì giả thiết )]1,0([ 30   IRIRIRCf không đủ mà phải là ),]1,0([ 31   IRIRIRCf dĩ nhiên cũng phải bổ sung thêm một số điều kiện phụ. Mặt khác cho dù ),]1,0([ 31   IRIRIRCf thì với các dữ kiện 10 ~ ,~ , ~ , ~ vvfB cho bài toán (0.31) - (0.33) cũng không áp dụng trực tiếp kết quả đã khảo sát cho bài toán (0.28) - (0.30). Điều này cho thấy rằng bài toán (0.28) - (0.30) là trường hợp riêng của bài toán (0.31) - (0.33), nhưng về kết quả thì lại là không. Chính vì vậy, chúng tôi vẫn phải trình bày hai bài toán (0.1) - (0.3) tương ứng với hai điều kiện biên thuần nhất và không thuần nhất. Trong vấn đề thứ hai, để xây dựng ý tưởng và cơ sở lập luận, trước tiên chúng tôi khảo sát phương trình nhiễu ) ,,,,,(.ε) ,,,,,( )] ,(.ε) ,([ 2 1 2 2 1 2 xtxxtx xxxxtt uuuutxfuuuutxf uutButBu   0.34) liên kết với (0.32) và (0.33). Khi đó với các giả thiết thích hợp về 1010 , , ~ ,~ , , gguufB , chúng tôi thu được một nghiệm yếu ),(ε txu có khai triển tiệm cận đến cấp 3 theo một tham số  đủ nhỏ. Kế tiếp, chúng tôi mở rộng việc khai triển tiệm cận đến cấp cao hơn cho phương trình nhiễu ) ,,,,,(.ε) ,,,,,( )](.ε)([ 22 2 1 2 xtxxtx xxxxtt uuuutxfuuuutxf uuBuBu   (0.35) liên kết với (0.29) và (0.30). Chúng tôi thu được một nghiệm yếu ),(ε txu có khai triển tiệm cận đến cấp N+1 theo một tham số  đủ nhỏ và các giả thiết thích hợp cho 10 ~ ,~ , , uufB . Các kết quả này đã được công bố trong hai bài báo [d1, d2] Chương 2: Chúng tôi xét phương trình sóng phi tuyến liên kết với một phương trình tích phân phi tuyến chứa giá trị biên. Bài toán đặt ra là tìm một cặp hàm (u, P) thỏa ,0),1,0( ,0),( Ttxuufuu txxtt  (0.36) ,0),1( ),(),0(  tutPtux (0.37) ),()0,( ),()0,( 10 xuxuxuxu t  (0.38) trong đó 10 , , uuf là các hàm cho trước thỏa một số điều kiện nào đó sẽ được giả thiết sau. Ẩn hàm u(x,t) và giá trị biên chưa biết P(t) thỏa một phương trình tích phân phi tuyến   t dssustKtuHtgtP 0 ,)),0(,()),0(()()( (0.39) trong đó g, H và K là các hàm cho trước. Bài toán (0.36) - (0.39) đã được nhiều tác giả quan tâm nghiên cứu theo nhiều kiểu điều kiện biên khác nhau tương ứng với các ý nghĩa cơ học nào đó, chẳng hạn như : Trong [1], N.T. An và N.Đ. Triều và trong [20] N.T. Long, Alain P.N. Định đã xét bài toán (0.36), (0.38) liên kết với điều kiện biên ,0),1( ),(),0(  tutPtux (0.40) trong đó ẩn hàm u(x,t) và giá trị biên chưa biết P(t) thỏa bài toán Cauchy cho phương trình vi phân thường ,0 ,),0()()('' 2 TtthutPtP tt  (0.41) ,)0(' ,)0( 10 PPPP  (0.42) ở đây 10 , ,0 ,0 PPh  là các hằng số cho trước [1, 20]. Trong [1] đã nghiên cứu một trường hợp đặc biệt của bài toán (0.36), (0.38) (0.41), (0.42) với 0 010  Puu và ,.),( tt uKuuuf  (0.43) với K và  là các hằng số dương cho trước. Trong trường hợp này bài toán (0.36), (0.38), (0.41), (0.42) là mô hình toán học mô tả sự va chạm của một vật rắn và một thanh đàn nhớt tuyến tính có một đầu đặt trên một nền cứng. Bằng việc giải bài toán (0.41), (0.42) ta thu được P(t) biểu thị theo t)(0, , , , , 10 ttuhPP  và sau khi tích phân từng phần, ta được   t dssustkthutgtP 0 ,),0()(),0()()( (0.44) trong đó       . sin)( , sin))0(( 1 cos))0(()( 1100 thtk thuPtuhPtg     (0.45) Bằng cách khử bớt một ẩn hàm P(t) thì điều kiện biên (0.37) có dạng .0),1( s,),0()(),0()(),0( 0   tudsustkthutgtu t x (0.46) Cũng với tt uKuuuf .),(  , trong [5], Bergounioux, N.T. Long và Alain P.N. Định đã khảo sát bài toán (0.36), (0.38), (0.44) và 0,),1(.),1(),1( ),(),0( 1  tutuKtutPtu txx  (0.47) ở đây 11 , , ,  KK là các hằng số không âm cho trước. Bài toán này mô tả sự va chạm của một vật rắn và một thanh đàn nhớt tuyến tính tựa trên một nền đàn nhớt với các ràng buộc tuyến tính ở bề mặt và các ràng buộc liên kết với lực cản ma sát nhớt. Trong trường hợp ),10( ),( 1     ttt uuuuf (0.48) Đ.Đ. Áng và Alain P.N. Định trong [3] đã thiết lập được một định lý tồn tại và duy nhất của một nghiệm toàn cục cho bài toán (0.36) - (0.38) với 10 , , uuP là các hàm cho trước. Bằng sự tổng quát hóa của [1, 3, 20], bài toán (0.36) - (0.38) cũng được xét bởi - Alain P.N. Định và N.T. Long [11,12] với k  0 và )),,0(()()( tuHtgtP  (0.49) ở đây H là hàm cho trước cũng nhận trường hợp H(s) = hs như là trường hợp riêng. - N.T. Long và T.M. Thuyết [28] với   t dsustktuHtgtP 0 s.),0()()),0(()()( (0.50) Trong chương này, chúng tôi thực hiện hai phần chính. Ở phần thứ 1, chúng tôi chứng minh định lý tồn tại và duy nhất nghiệm yếu toàn cục của bài toán (0.36) - (0.39). Việc chứng minh dựa trên cơ sở của phương pháp xấp xỉ Galerkin kết hợp với các đánh giá tiên nghiệm, các kỹ thuật của phương pháp compact và phương pháp hội tụ yếu. Trong phần xấp xỉ Galerkin, chúng tôi cũng sử dụng định lý về điểm bất động Schauder để kiểm tra sự tồn tại của nghiệm xấp xỉ. Sự khó khăn chính gặp phải trong phần này là điều kiện biên tại 0x . Ta chú ý rằng phương pháp tuyến tính hóa đã sử dụng trong [6, 10, 21, 23, 24, 33] không dùng được trong [3, 5, 9, 11-13, 19, 20, 26, 27, 29, 30, 34]. Trong phần thứ 2 của chương này, chúng tôi chứng minh nghiệm (u,P) là ổn định đối với các hàm g, H và K. Các kết quả thu được ở đây đã tổng quát hóa tương đối các kết quả trong [1, 3, 5, 9-12, 17, 20, 21, 25, 28, 33] và đã được công bố trong [d3]. Các kết quả trên đây của luận án đã được công bố trong ([d1]-[d4]) và đã tham gia báo cáo trong các hội nghị: - Hội nghị về Phương trình đạo hàm riêng và Ứng dụng, Hà Nội, 27-29/12/99. - Hội nghị Toán học Việt nam
Luận văn liên quan