Phản ứng Heck là phản ứng ghép mạch nhằm xây dựng nên khung C–C, phản ứng này có vai trò to lớn trong tổng hợp để tổng hợp nên các hợp chất hữu cơ mới có nhiều giá trị ứng dụng trong đời sống ở nhiều lĩnh vực khác nhau như dược phẩm, nông nghiệp Mặc dù nó đã được nghiên cứu từ khoảng năm 1971 nhưng hiện nay vẫn đang thu hút sự quan tâm của nhiều nhà nghiên cứu.
Phản ứng Heck trước đây thường được thực hiện trong điều kiện gia nhiệt thông thường ở nhiệt độ khá cao nên thời gian phản ứng dài và cho hiệu suất chưa cao. Các nghiên cứu gần đây đã cho thấy phản ứng Heck cho hiệu suất cao khi thực hiện với các loại xúc tác phức khác nhau của Pd, ưu điểm nổi bật của các xúc tác phức là hạn chế tối thiểu việc sinh ra các sản phẩm phụ, hiệu suất cũng nâng lên. Tuy nhiên nếu các xúc tác này được gắn trên các chất mang thì khả năng tách và thu hồi xúc tác được cải thiện. Với sự phát triển của công nghệ nano hiện nay thì việc đưa xúc tác phức trên về dạng nano là có thể, điều này đồng nghĩa với khả năng xúc tác được cải thiện mà vẫn đảm bảo việc thu hồi xúc tác.
Ở Việt nam hiện nay việc nghiên cứu phản ứng này vẫn chưa rộng rãi và vẫn chưa được đưa vào trong chương trình giáo dục. Với luận văn này, chúng tôi muốn nghiên cứu thực hiện phản ứng Heck với xúc tác Pd cố định trên vật liệu nano từ tính dưới điều kiện vi sóng. Với mong muốn khảo sát điều kiện tối ưu để thực hiện phản ứng Heck sao cho vừa nâng cao giá trị của sản phẩm hạn chế ít nhất sản phẩm phụ, tái sử dụng xúc tác để đem lại lợi ích về kinh tế. Hơn nữa, chúng tôi cũng muốn góp phần vào hoàn thiện thêm về các nghiên cứu phản ứng này và hy vọng trong thời gian sớm nhất nó sẽ được đưa vào trong chương trình giáo dục hay áp dụng trong sản xuất thực tế ở Việt nam.
97 trang |
Chia sẻ: ngtr9097 | Lượt xem: 3615 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu thực hiện phản ứng heck sử dụng xúc tác palladium cố định trên vật liệu nano từ tính trong điều kiện vi sóng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH
TRƯỜNG ĐẠI HỌC BÁCH KHOA
-----o0o-----
NGUYỄN THỊ HỒNG ANH
NGHIÊN CỨU THỰC HIỆN PHẢN ỨNG HECK SỬ DỤNG XÚC TÁC PALLADIUM CỐ ĐỊNH TRÊN VẬT LIỆU NANO TỪ TÍNH TRONG
ĐIỀU KIỆN VI SÓNG
CHUYÊN NGÀNH: CÔNG NGHỆ HOÁ HỌC
LUẬN VĂN THẠC SĨ
TP. HỒ CHÍ MINH, 07/2009
ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH
CỘNG HÒA XÃ HỘI CHŨ NGHĨA VIỆT NAM
TRƯỜNG ĐẠI HỌC BÁCH KHOA
Độc lập – Tự do – Hạnh phúc
Tp.HCM, ngày…02..tháng …07..năm 2010
NHIỆM VỤ LUẬN VĂN THẠC SĨ
HỌ VÀ TÊN: NGUYỄN THỊ HỒNG ANH Phái: Nữ
Ngày sinh: 23-10-1981 Nơi sinh: Bạc liêu
Chuyên ngành: Công nghệ Hoá học
Khoá: 2007
1. TÊN ĐỀ TÀI: “ Nghiên cứu thực hiện phản ứng Heck sử dụng xúc tác Palladium cố định trên vật liệu Nano từ tính trong điều kiện vi sóng „
2. NHIỆM VỤ LUẬN VĂN:
- Tổng hợp và xác định cấu trúc của xúc tác Pd gắn trên chất mang nano từ tính bằng IR, SEM, TEM, XRAY, TGA, EA.
- Sử dụng xúc tác cho phản ứng Heck giữa iodobenzene và dẫn xuất với styren
- Khảo sát ảnh hưởng của các yếu tố như hàm lượng xúc tác, base, nhóm thế halogenua, nhóm thế lên độ chuyển hoá của phản ứng
3. Ngày giao nhiệm vụ luận văn: 22-06-2009.
4. Ngày hoàn thành nhiệm vụ: 26-06-2010.
5. Cán bộ hướng dẫn: TS. Phan Thanh Sơn Nam
Nội dung và yêu cầu Luận Văn Thạc Sĩ đã được thông qua Bộ Môn.
CÁN BỘ HƯỚNG DẪN
(Họ tên và chữ ký)
PGS.TS. PHAN THANH SƠN NAM
CHỦ NHIỆM BỘ MÔN QUẢN LÝ CHUYÊN NGÀNH
(Họ tên và chữ ký)
KHOA QL CHUYÊN NGÀNH
(Họ tên và chữ ký)
CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI
ĐẠI HỌC QUỐC GIA TP.HCM
TRƯỜNG ĐẠI HỌC BÁCH KHOA
Cán bộ hướng dẫn khoa học : PGS.TS. PHAN THANH SƠN NAM
Cán bộ các phần tử nhận xét 1 :............................
(Ghi rõ họ, tên, học hàm, học vị và chữ ký)
Cán bộ các phần tử nhận xét 2 :........................................
(Ghi rõ họ, tên, học hàm, học vị và chữ ký)
Luận văn thạc sĩ được bảo vệ tại
HỘI ĐỒNG CHẤM BẢO VỆ LUẬN VĂN THẠC SĨ
TRƯỜNG ĐẠI HỌC BÁCH KHOA, ngày . . . . tháng . . . năm 2010
LỜI CẢM ƠN
Đầu tiên tôi muốn gởi lời cảm ơn đến PGS.TS. Phan Thanh Sơn Nam, người đã trực tiếp hướng dẫn tôi làm luận văn tốt nghiệp này. Tôi xin cảm ơn các thầy cô trong bộ môn Kỹ thuật Hóa hữu cơ, các anh chị phụ trách phòng thí nghiệm hữu cơ đã tạo điều kiện tốt nhất về cơ sở vật chất cũng như tinh thần để tôi thực hiện thí nghiệm trong điều kiện tốt nhất. Cảm ơn các bạn, các em cùng làm trong phòng thí nghiệm 402 B2 đã giúp tôi suốt thời gian tôi thực hiện luận văn tại phòng thí nghiệm.
Sau nữa tôi muốn gửi lời cảm ơn đến các đồng nghiệp của tôi đã giúp đỡ và tạo điều kiện thuận lợi cho tôi để tôi có thời gian hoàn thành khóa học của mình.
Cuối cùng tôi xin gửi lời cảm ơn sâu sắc đến gia đình tôi những người lo lắng, giúp đỡ và động viên tôi để tôi vượt qua được những khó khăn để có thể hoàn thành khóa học cũng như luận văn này.
Mặc dù tôi đã rất cố gắng để hoàn thành cuốn luận văn này nhưng không tránh khỏi có những thiếu xót, rất mong sự thông cảm, góp ý của quí thầy cô và các bạn.
Nguyễn Thị Hồng Anh
MỤC LỤC
MỤC LỤC CÁC BẢNG BIỂU
Bảng 1.2. Kết quả của phản ứng Heck Bromo và Iodo 25
Bảng 1.3. Độ chuyển hóa của phản ứng Heck 26
Bảng 1.4. Phản ứng Heck của các aryl halide và axit acrylic 27
Bảng 1.5. Kết quả Phản ứng Heck giữa p-bromonitrobenzene với methyl acrylate 37
Bảng 1.6. Kết quả Phản ứng Heck của Aryl Bromides và Chlorides với Styrene 38
Bảng 1.7. LDH(layered double hydroxide)−Pd0 xúc tác phản ứng Heck giữa Olefin với Chloroarene 40
Bảng 1.8. Kết quả Phản ứng Heck với sự thay đổi nhóm thế trong dẫn xuất halogenua khác nhau 41
Bảng 1.9. Kết quả Phản ứng Heck giữa p-bromonitrobenzene với methyl acrylate 42
Bảng 3.1. Kết quả ảnh hưởng của base lên độ chuyển hóa của phản ứng 61
Bảng 3.2. Kết quả ảnh hưởng của hàm lượng xúc tác lên độ chuyển hóa của phản ứng 64
Bảng 3.3. Kết quả ảnh hưởng của nhóm thế lên độ chuyển hóa của phản ứng 67
Bảng 3.4. Kết quả ảnh hưởng của halogen lên độ chuyển hóa của phản ứng 70
Bảng 3.5. Kết quả độ chuyển hóa của phản ứng sử dụng xúc tác thu hồi 72
Bảng 3.6. Kết quả ảnh hưởng của base lên độ chuyển hóa của phản ứng 73
Bảng 3.7. Kết quả ảnh hưởng của hàm lượng xúc tác lên độ chuyển hóa của phản ứng 76
Bảng 3.8. Kết quả ảnh hưởng của nhóm thế lên độ chuyển hóa của phản ứng 78
Bảng 3.9. Kết quả độ chuyển hóa của phản ứng ở 105oC sau 6h sử dụng 0,2% xúc tác 80
Bảng 3.10. Kết quả độ chuyển hóa ở 800W sau 60phút sử dụng 0,2% xúc tác 80
MỤC LỤC CÁC HÌNH VẼ
Hình 1.1 Phân loại vật liệu nano. 5
Hình 1.2. Micelle thuận (a) và micelle ngược (b) 10
Hình 1.3. Tổng hợp các hạt nano Pd bằng cách sử dụng phương pháp vi nhũ w/o 10
Hình 1.4. Độ chuyển hóa của thí nghiệm tái sinh sử dụng Pd-PEG 2000 như xúc tác trong phản ứng của 4-iodo-anisole với ethyl acrylate (trái) và Pd-PEG2000 trong phản ứng hydro hóa của cyclohexene ở 70 °C (phải). 15
Hình 1.5. Ảnh hưởng của từ trường lên mômen từ 18
Hình 1.6. Xúc tác NiFe2O4-DA-Pd 24
Hình 1.7. Gradient nhiệt độ nghịch trong gia nhiệt vi sóng (trái) so với gia nhiệt bằng dẫn nhiệt (oil-bath heating)(phải) 28
Hình 1.8. Tác dụng của vi sóng lên phân tử nước 29
Hình 2.1. Sự kết hợp của các phân tử bề mặt với các phần tử ưa nước 48
Hình 2.2: Hạt nano CoFe2O4 có thể bị hút bởi một nam châm 48
Hình 2.3. TGA và DTA của hạt nano CoFe 2O4. 48
Hình 2.4. TGA và DTA của hạt nano CoFe 2O4 được làm giàu OH 49
Hình 2.5: TGA và DTA của hệ amino hóa. 50
Hình 2.6: TGA và DTA của hệ cố định Schiff base 50
Hình 2.7: TGA và DTA của hệ xúc tác Pd gắn trên chất mang nano từ tính 51
Hình 2.8. SEM (trái) và TEM (phải) micrographs của chất xúc tác paladinium 51
Hình 2.9. Phổ XRD của xúc tác paladiniumum paladinium 52
Hình 2.10. Quang phổ FT-IR của hạt nano CoFe2O4 53
Hình 2.11. Quang phổ FT-IR của hệ amino hóa 53
Hình 2.12. Quang phổ FT-IR của hệ baseshiff 54
Hình 2.13. Quang phổ FT-IR của xúc tác 54
Hình 3.1. Hệ thống phản ứng lắp trong lò vi sóng thực hiện phản ứng Heck. 59
Hình 3.2. Đồ thị ảnh hưởng của base lên độ chuyển hóa 63
Hình 3.3. Đồ thị ảnh hưởng của base lên độ chọn lọc 63
Hình 3.4. Đồ thị ảnh hưởng của hàm lượng xúc tác lên độ chuyển hóa 65
Hình 3.5. Đồ thị ảnh hưởng của hàm lượng xúc tác lên độ chọn lọc 65
Hình 3.6. Đồ thị ảnh hưởng của nhóm thế lên độ chuyển hóa 68
Hình 3.7. Đồ thị ảnh hưởng của nhóm thế lên độ chọn lọc 68
Hình 3.8. Đồ thị ảnh hưởng của halogen lên độ chuyển hóa 71
Hình 3.9. Đồ thị ảnh hưởng của halogen lên độ chọn lọc 71
Hình 3.10. Đồ thị ảnh hưởng tái sử dụng xúc tác lên độ chọn lọc của phản ứng 72
Hình 3.11. Đồ thị ảnh hưởng của base lên độ chuyển hóa 75
Hình 3.12. Đồ thị ảnh hưởng của base lên độ chọn lọc 75
Hình 3.13. Đồ thị ảnh hưởng của hàm lượng xúc tác lên độ chuyển hóa 77
Hình 3.14. Đồ thị ảnh hưởng của hàm lượng xúc tác lên độ chọn lọc 77
Hình 3.15. Đồ thị ảnh hưởng của nhóm thế lên độ chuyển hóa 79
Hình 3.16. Đồ thị ảnh hưởng của nhóm thế lên độ chọn lọc 79
Hình 3.17. Đồ thị độ chuyển hóa của phản ứng dưới điều kiện gia nhiệt thường 81
Hình 3.18. Đồ thị độ chọn lọc của phản ứng dưới điều kiện gia nhiệt thường 81
Hình 3.19. Đồ thị độ chuyển hóa của phản ứng dưới điều kiện gia nhiệt vi sóng 81
Hình 3.20. Đồ thị độ chọn lọc của phản ứng dưới điều kiện gia nhiệt vi sóng 81
MỤC LỤC CÁC SƠ ĐỒ
Sơ đồ 1.2. Phản ứng hydro hóa của cyclohexene sử dụng xúc tác Pd-PEG 2000 như xúc tác sử dụng Pd-PEG 2000 15
Sơ đồ 1.3. Phương pháp phân bố xúc tác Pd trên chất mang ống nano 16
Sơ đồ 1.4. Hydroformyl hóa của 4-vinylanisole bằng xúc tác trên chất mang 20
Sơ đồ 1.5. Ru(BINAPPO3H2)(DPEN)Cl2 trên chất mang Fe3O4 nano 20
Sơ đồ 1.6. Hệ xúc tác mà Pd được cố định trên nano từ tính phủ lớp màng polystyrene 21
Sơ đồ 1.7. Tổng hợp hạt nano từ tính phủ silica với thiol- (trên) và amine- (dưới) 22
Sơ đồ 1.8. Tổng hợp xúc tác magnetite-silica-supported di (2-pyridyl) methanol-Pd-complex 22
Sơ đồ 1.9 Tổng hợp xúc tác Pd/(SiO2/Fe3O4). (A) Fe3O4 nanoparticle; (B) SiO2/Fe3O4; (C) APTS phủ trên hạt nano SiO2/Fe3O4; (D) Pd/(SiO2/Fe3O4). 23
Sơ đồ 1.11. Tổng hợp xúc tác Pd trên hạt nano từ tính và sử dụng cho phản ứng Heck của 4-bromonitrobenzene với styrene 26
Sơ đồ 1.12. Phản ứng Heck của các aryl halide và axit acrylic 27
Sơ đồ 1.13. Phản ứng kết hợp các dẫn xuất phenothiazine tạo HIV-1 TAR RNA 31
Sơ đồ 1.14. tổng hợp của β-Hydroxy sulfoside 32
Sơ đồ 1.15. Phản ứng cộng đóng vòng Diels-Alder 32
Sơ đồ 1.16. Sơ đồ cơ chế phản ứng Heck 33
Sơ đồ 1.17. Phản ứng tổng hợp Rosavin 36
Sơ đồ 1.18. Phản ứng giữa aryl halogenua và một olefin 36
Sơ đồ 1.19. Phản ứng Heck giữa p-bromonitrobenzene với methyl acrylate 36
Sơ đồ 1.21. Phản ứng Heck với sự thay đổi nhóm thế trong dẫn xuất halogenua khác nhau 40
Sơ đồ 1.22. Phản ứng Heck giữa p-bromonitrobenzene với methyl acrylate 42
Sơ đồ 2.1. Tổng hợp các chất xúc tác paladinium cố định trên hạt nano từ tính. 47
Sơ đồ 3.1. Phản ứng Heck của halogenua aryl và styrene 59
Sơ đồ 3.2. Qui trình tổng quát thực hiện phản ứng Heck. 60
DANH PHÁP CÁC TỪ VIẾT TẮT
CVD Chemical vapor deposition
CVC Chemical vapor condensation
CMC Critical micelle concerntration
PEFC Polymer electrolyte fuel cell
TEM Transmission electron microscope
SEM Scanning electron microscope
XRD X-ray diffraction
Au MPCs Monolayer -protected Au nanoclusters
APTS 3-aminopropyl triethoxysilane
SiMNPs Silica-coated magnetic nanoparticles
SiMNPs Silica-coated magnetic nanoparticles
DMF Dimethylformamide
SDS Sodium dodecyl sulfate
GC Gas Chromatography
GC-MS Gas chromatography – mass spectroscopy
FT-IR Fourier transform infrared
TGA Thermogravimetric analysis
DTA Differential thermal analysis
EA Elemental analysis
TÓM TẮT LUẬN VĂN
Vật liệu nano từ tính CoFe2O4 được điều chế và biến tính bề mặt với các nhóm amine, sau đó phản ứng với 2-acetyl pyridine hình thành các nhóm Schiff base. Phản ứng tạo phức giữa các Schiff base này với palladium acetate tạo thành xúc tác palladium cố định trên các hạt nano từ tính. Xúc tác được phân tích bằng những phương pháp như nhiễu xạ tia X (XRD), hiển vi điện tử quét (SEM), hiển vi điện tử truyền qua (TEM), phân tích nhiệt trọng lượng (TGA), phổ hồng ngoại (FT-IR) và phân tích nguyên tố. Xúc tác được sử dụng cho phản ứng Heck giữa các aryl halide với styrene trong điều kiện có sự hỗ trợ của vi sóng. Phản ứng được khảo sát khi thay đổi các điều kiện phản ứng khác nhau: base, hàm lượng xúc tác, nhóm thế, halogen. Sản phẩm chính thu được sau phản ứng là trans-stilbene. Độ chuyển hóa của phản ứng được xác định bằng GC với các chất chuẩn đối chứng là trans - stilbene và cis- stilbene, sản phẩm còn được xác định bằng GC-MS. Kết quả nghiên cứu cho thấy tốc độ phản ứng trong điều kiện vi sóng lớn hơn đáng kể so với phản ứng trong điều kiện gia nhiệt thông thường. Xúc tác được tách ra khỏi hỗn hợp phản ứng dễ dàng bằng cách sử dụng một nam châm và có thể tái sử dụng mà hoạt tính không giảm đáng kể.
ABSTRACT
LỜI MỞ ĐẦU
Phản ứng Heck là phản ứng ghép mạch nhằm xây dựng nên khung C–C, phản ứng này có vai trò to lớn trong tổng hợp để tổng hợp nên các hợp chất hữu cơ mới có nhiều giá trị ứng dụng trong đời sống ở nhiều lĩnh vực khác nhau như dược phẩm, nông nghiệp…Mặc dù nó đã được nghiên cứu từ khoảng năm 1971 nhưng hiện nay vẫn đang thu hút sự quan tâm của nhiều nhà nghiên cứu.
Phản ứng Heck trước đây thường được thực hiện trong điều kiện gia nhiệt thông thường ở nhiệt độ khá cao nên thời gian phản ứng dài và cho hiệu suất chưa cao. Các nghiên cứu gần đây đã cho thấy phản ứng Heck cho hiệu suất cao khi thực hiện với các loại xúc tác phức khác nhau của Pd, ưu điểm nổi bật của các xúc tác phức là hạn chế tối thiểu việc sinh ra các sản phẩm phụ, hiệu suất cũng nâng lên. Tuy nhiên nếu các xúc tác này được gắn trên các chất mang thì khả năng tách và thu hồi xúc tác được cải thiện. Với sự phát triển của công nghệ nano hiện nay thì việc đưa xúc tác phức trên về dạng nano là có thể, điều này đồng nghĩa với khả năng xúc tác được cải thiện mà vẫn đảm bảo việc thu hồi xúc tác.
Ở Việt nam hiện nay việc nghiên cứu phản ứng này vẫn chưa rộng rãi và vẫn chưa được đưa vào trong chương trình giáo dục. Với luận văn này, chúng tôi muốn nghiên cứu thực hiện phản ứng Heck với xúc tác Pd cố định trên vật liệu nano từ tính dưới điều kiện vi sóng. Với mong muốn khảo sát điều kiện tối ưu để thực hiện phản ứng Heck sao cho vừa nâng cao giá trị của sản phẩm hạn chế ít nhất sản phẩm phụ, tái sử dụng xúc tác để đem lại lợi ích về kinh tế. Hơn nữa, chúng tôi cũng muốn góp phần vào hoàn thiện thêm về các nghiên cứu phản ứng này và hy vọng trong thời gian sớm nhất nó sẽ được đưa vào trong chương trình giáo dục hay áp dụng trong sản xuất thực tế ở Việt nam.
Chương 1: TỔNG QUAN
1.1. Tổng quan về vật liệu nano
1.1.1 Giới thiệu
Công nghệ nano có nghĩa là những kỹ thuật sử dụng kích thước từ 0,1nm đến 100nm. Trong công nghệ nano có phương thức từ trên xuống dưới (top-down) nghĩa là chia nhỏ hệ thống lớn để cuối cùng tạo ra được đơn vị có kích thước nano và phương thức từ dưới lên trên (bottom-up) nghĩa là nắp ghép những hạt cỡ phân tử hay nguyên tử lại để thu được kích thước nano. Đặc biệt những năm gần đây, việc thực hiện công nghệ nano theo phương thức bottom-up trở thành kỹ thuật thu hút được nhiều sự quan tâm [1].
Trong vài năm gần đây khoa học nano và công nghệ nano có những phát triển mạnh mẽ và hiện nay thời đại công nghệ nano đang ở thế hệ thứ hai, trong giai đoạn này cấu trúc nano được sử dụng ở dạng hoạt động như bóng bán dẫn, bộ khuếch đại, chất dẫn thuốc ...trong khi thế hệ đầu tiên sử dụng cấu trúc nano lại được sử dụng ở dạng thụ động như trong sơn, các hạt nano, kim loại cấu trúc nano, polyme và gốm sứ. Vật liệu nano có thể phân loại dựa trên đường kính của cấu trúc nano:
Vật liệu nano ba chiều như các phần tử lượng tử hoặc các tinh thể nano, các fullerene, các hạt, các kết tủa và chất keo có đường kính ba chiều ở giới hạn nanomet.
Vật liệu nano hai chiều bao gồm các ống nano, các dendrimer, dây nano có đường kính hai chiều ở giới hạn nanomet.
Vật liệu nano một chiều như lớp phủ bề mặt, màng mỏng và các giao diện có kích thước nano. Các loại vật liệu nano này đã được sử dụng trong nhiều thập niên ở các lĩnh vực thiết bị điện tử, hóa học và kỹ thuật [2]
Một hạt nano có cấu trúc ba chiều nano, được định nghĩa là một vi hạt với ít nhất một chiều có kích thước nhỏ hơn 100 nm [3]. Hạt nano được khoa học rất quan tâm bởi vì nó được xem như là cầu nối giữa các vật liệu dạng khối và cấu trúc nguyên tử hoặc phân tử.
Hình 1.1 Phân loại vật liệu nano [4]
1.1.2. Tính chất của vật liệu nano
Vật liệu nano có điểm đặc biệt là tỷ lệ giữa diện tích bề mặt với thể tích tăng lớn so với các vật liệu thông thường, điều này mở ra những hướng phát triển mới trong khoa học dựa trên bề mặt vật liệu. Một số vật liệu dạng khối do kích cỡ của nó lớn và có tính chất vật lý ổn định nên không được giới khoa học quan tâm nhiều, nhưng khi vật liệu ở kích thước nano thì tính chất vật lý lại thường được chú ý [5]. Khi vật liệu giảm xuống kích thước nano có thể xuất hiện những tính chất mới, điều này làm cho chúng có các ứng dụng đặc biệt. Ví dụ: các chất đục trở thành trong suốt (đồng); vật liệu trơ trở thành chất xúc tác (platinum); vật liệu ổn định thành dễ cháy(nhôm); chất rắn chuyển thành chất lỏng ở nhiệt độ phòng (vàng); chất cách điện thành chất dẫn (silicon). Một vật liệu như vàng là chất trơ về mặt hóa học ở kích thước bình thường nhưng ở kích cỡ nano lại có thể sử dụng như là một chất xúc tác hóa học mạnh [5].
Hạt nano được phân loại bởi những đặc điểm đặc điểm (i) bề mặt của nguyên tử lớn, (ii) năng lượng bề mặt lớn (iii) không gian giới hạn và (iv) sự giảm khuyết tật [6] Các hạt nano có thể có tính chất đó như sau:
(1) hạt nano có thể có một nhiệt độ nóng chảy hoặc nhiệt độ chuyển pha thấp. Việc hạ thấp điểm nóng chảy được giải thích do năng lượng bề mặt gia tăng với kích thước giảm. Nhưng việc xác định nhiệt độ nóng chảy của các hạt nano vẫn không dễ dàng, tuy nhiên, có thể để thực hiện qua thực nghiệm để xác định ảnh hưởng của kích thước lên nhiệt độ nóng chảy của các hạt nano. Ví dụ, điểm nóng chảy của vàng khối là 1.337 K và giảm nhanh chóng khi kích thước các hạt nano dưới 5nm [6].
(2) Tính chất cơ học của các hạt nano có thể đạt được độ bền theo lý thuyết. Việc tăng cường độ bền cơ học đơn giản chỉ là do giảm xác suất khuyết tật. Theo thực nghiệm cho thấy độ bền và độ cứng của các kim loại cấu trúc nano phụ thuộc vào các phương pháp sử dụng để thay đổi kích thước hạt. Mặc dù đã có nhiều nghiên cứu về tính chất cơ học của các hạt nano khác nhau nhưng ảnh hưởng của kích thước hạt lên tính chất cơ học vẫn chưa rõ ràng. Ngoài ra còn nhiều yếu tố có thể tác động đáng kể lên các tính chất cơ học của vật liệu cấu trúc nano như sự biến dạng của các chất còn dư, các kích thước lỗ hổng và nội ứng suất. Ngoài ra cũng có nhiều nghiên cứu về các tính chất cơ học khác của vật liệu cấu trúc nano, chẳng hạn như mô đun Young, độ rão và tính dẻo, tuy nhiên sự ảnh hưởng của kích thước lên các tính chất này vẫn chưa được chắc chắn [6].
(3) Tính chất quang học của hạt nano có thể có sự khác biệt đáng kể so với các tinh thể ở dạng khối. Dựa vào sự ảnh hưởng của kích thước có thể phân loại thành hai nhóm. Nhóm thứ nhất liên quan đến tăng khoảng cách giữa các mức năng lượng làm hệ thống trở nên bị hạn chế và ngoài ra còn liên quan đến cộng hưởng plasmon bề mặt. Cộng hưởng Plasmon bề mặt là kích thích của tất cả các điện tử tự do trong vùng dẫn, dẫn đến sự dao động cùng pha. Khi kích cỡ của một hạt nhỏ hơn bước sóng của bức xạ tới thì sẽ tạo ra sự cộng hưởng plasmon. Do sự cộng hưởng plasmon bề mặt nên các hạt nano kim loại có thể có các màu sắc khác nhau khi thay đổi kích thước. Ví dụ, keo hạt nano vàng thường là màu đỏ (khi kích thước hạt nhỏ hơn 100 nm) [6]
(4) Độ dẫn điện giảm khi kích thước giảm. Những ảnh hưởng của kích thước lên độ dẫn điện của các hạt nano là khá phức tạp vì nó dựa trên cách thức riêng [6].
(5) Từ tính của vật liệu cấu trúc nano có sự khác biệt đáng kể với vật liệu dạng khối. Khi kích cỡ hạt giảm xuống quy mô nanomet, do năng lượng bề mặt rất lớn nên tính sắt từ của vật liệu khối sẽ biến mất hay chuyển thành siêu thuận từ [6].
(6) Tự làm sạch là một tính chất nhiệt động lực nội tại của cấu trúc nano và vật liệu nano. Khi có xử lý nhiệt sẽ đẩy mạnh sự khuếch tán của các tạp chất, khuyết tật về cấu trúc nội tại và sự di chuyển, do đó dễ dàng đẩy chúng sang bề mặt bên cạnh. Tăng cường hoàn thiện có ảnh hưởng đáng kể đến tính chất hóa học và vật lý. Ví dụ, độ ổn định của hóa chất sẽ được nâng cao [6]. Trên tất cả, các tính chất này phụ thuộc nhiều vào kích cỡ của các hạt nano. Nói cách khác, tính chất của các hạt nano khác biệt rõ ràng khi điều chỉnh kích thước, hình dạng hoặc mức kết tụ [6].
1.1.4. Tổng hợp hạt nano
Hạt nano đã được tổng hợp thành công bằng nhiều phương pháp khác nhau nhưng có thể được chia thành 3 phương pháp cơ bản: pha rắn, pha khí và dung dịch. Hiện nay, các nhà khoa học đã khảo sát một số qui trình tổng hợp hạt nano có sự kết hợp các phương pháp trên [7].
1.1.4.1. Tổng hợp pha rắn
Tổng hợp pha rắn chủ yếu liên quan đến xử lý nhiệt (để đạt được cấu trúc tinh thể) và phương pháp nghiền. Phương pháp này thường được biết đến là gặp khó khăn để đạt tỷ lệ lớn các hạt có kích thước hạt trung bình có giới hạn dưới 100 nm, gần đây những cải tiến trong ngành công nghiệp vật liệu nano đã chứng minh điều đó là không đúng. Một số hệ thống đặc biệt của máy mài có thể làm để giảm kích thước hạt tới dưới kích cỡ 100nm. Các hạt nano cỡ 30 nm có thể được tổng hợp bằng phương pháp mài từ các hạt kích thước nhỏ (khoảng 200 mm) [7]
1.1.4.2. Tổng hợp pha hơi
Các bột có thể điều chế bằng oxy hóa, khử, phân tách hay bằng các phản ứng hóa học khác, dung nhiệt độ cao tạo ra bằng lò đốt, plasma, laser, ngọn lửa…ưu điểm của phương pháp pha hơi là sản phẩm có độ tinh khiết cao do dễ dàng làm sạch các chất phản ứng và không bị nhiễm bẩn do tiếp xúc với bình chứa. Các phương pháp được tổ chức căn cứ theo nguồn nhiệt sử dụng [1].
Ngưng tụ khí trơ
Ngưng tụ khí là một phương pháp để s