Luận văn Thực thi khử nhiễu kiểu thích nghi trên TMS320C6711 DSK

Chúng ta cần trao đổi các thông tin mang tính chính xác của sự vật, hiện tượng, mặt khác chúng ta cũng mong muốn tiếp nhận các tín hiệu mà mỗi nguời cần quan tâm riêng nhưng không làm mất đi tính trung thực của nguồn gốc thông tin,và cũng có khi chúng ta cần những thông tin mà không có thật trong thực tế vì mục đích riêng nào đó,.v.v.; như vậy để đáp ứng các nhu cầu đó thì con người ngày đêm không ngừng tạo ra các sản phẩm thoả mãn nhu cầu của con người.Trong các hướng đi và các cách giải quyết khác nhau cho các vấn đề nêu trên, thì lĩnh vực xử lý tín hiệu số( DSP)mỗi ngày càng phát triển mạnhmẽvà vững vàng. Lý do của sự thành công đó là nhờ sự phát triển phần cứng chi phí thấp, áp dụng các phần mềm đơn giản, linh hoạt nhưng không thiếu đi sự mạnh mẽ về hiệu quả thi hành. Và thực tế ngày nay, DSP đã được áp dụng rộng rãi trong hầu hết tất cả các ngành. Sống trong thế giới hiệnđại như ngày nay, chúng ta tiếpxúcvớibiết bao loại tín hiệu và dưới nhiều dạng khác nhau. Có các tín hiệu rất cần thiết như âm thanh, hình ảnh hay các tín hiệu giải trí như âm nhạc .v.v.Và bên cạnh cũng luôn tồn tại các tín hiệu khó chịu hoặc không cần thiết trong hoàn cảnh riêng nào đó, mà ta gọi đó là nhiễu. Xử lý tín hiệu là trích lấy, tăng cường, lưu trữ và truy ền thông tin có ích mà con người cần quan tâm trong vô vàn thông tin có ích cũng như vô ích. Sự phân biệt giữa thông tin có ích và vô ích là phụ thuộc vào ý thức chủ quan của mỗi người. Nếu tín hiệu ta không quan tâm thì đó là tín hiệu vô ích và ta có th ể xem là nhiễu. Xuất phát từ lẽ đó, đồ án này sẽ đi nghiên cứu và thực hiện khử nhiễu tín hiệu âm thanh trên TMS320C6711 DSKsử dụng bộ DSP TMS320C6711 của hãng Texas Instruments.

pdf94 trang | Chia sẻ: lvbuiluyen | Lượt xem: 2108 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Luận văn Thực thi khử nhiễu kiểu thích nghi trên TMS320C6711 DSK, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1 Luận văn Thực thi khử nhiễu kiểu thích nghi trên TMS320C6711 DSK. 2 Chúng ta cần trao đổi các thông tin mang tính chính xác của sự vật, hiện tượng, mặt khác chúng ta cũng mong muốn tiếp nhận các tín hiệu mà mỗi nguời cần quan tâm riêng nhưng không làm mất đi tính trung thực của nguồn gốc thông tin, và cũng có khi chúng ta cần những thông tin mà không có thật trong thực tế vì mục đích riêng nào đó,.v.v.; như vậy để đáp ứng các nhu cầu đó thì con người ngày đêm không ngừng tạo ra các sản phẩm thoả mãn nhu cầu của con người.Trong các hướng đi và các cách giải quyết khác nhau cho các vấn đề nêu trên, thì lĩnh vực xử lý tín hiệu số( DSP) mỗi ngày càng phát triển mạnh mẽ và vững vàng. Lý do của sự thành công đó là nhờ sự phát triển phần cứng chi phí thấp, áp dụng các phần mềm đơn giản, linh hoạt nhưng không thiếu đi sự mạnh mẽ về hiệu quả thi hành. Và thực tế ngày nay, DSP đã được áp dụng rộng rãi trong hầu hết tất cả các ngành. Sống trong thế giới hiện đại như ngày nay, chúng ta tiếp xúc với biết bao loại tín hiệu và dưới nhiều dạng khác nhau. Có các tín hiệu rất cần thiết như âm thanh, hình ảnh hay các tín hiệu giải trí như âm nhạc .v.v.Và bên cạnh cũng luôn tồn tại các tín hiệu khó chịu hoặc không cần thiết trong hoàn cảnh riêng nào đó, mà ta gọi đó là nhiễu. Xử lý tín hiệu là trích lấy, tăng cường, lưu trữ và truyền thông tin có ích mà con người cần quan tâm trong vô vàn thông tin có ích cũng như vô ích. Sự phân biệt giữa thông tin có ích và vô ích là phụ thuộc vào ý thức chủ quan của mỗi người. Nếu tín hiệu ta không quan tâm thì đó là tín hiệu vô ích và ta có thể xem là nhiễu. Xuất phát từ lẽ đó, đồ án này sẽ đi nghiên cứu và thực hiện khử nhiễu tín hiệu âm thanh trên TMS320C6711 DSK sử dụng bộ DSP TMS320C6711 của hãng Texas Instruments. Hầu hết các bộ DSP được sử dụng nằm trong hai mục đích chính là: phân tích tín hiệu và lọc tín hiệu. Phân tích tín hiệu: liên quan đến việc đo các đặc tính của tín hiệu, thường thao tác ở trong miền tần số. Nó có một số ứng dụng như sau: 3 Phân tích phổ( tần số và/hoặc pha) Nhận dạng tiếng nói Xác nhận người nói Dò tìm mục tiêu Lọc tín hiệu: là công việc với nét đặc trưng có tín hiệu vào và tín hiệu ra. Các hệ thống thực hiện các nhiệm vụ này thường được gọi là các bộ lọc. Nó có một số ứng dụng như sau: Khử tạp âm nền Khử giao thoa nhiễu Tách rời các dãi tần Định dạng phổ tần tín hiệu Khôi phục tín hiệu bị nhiễu và giảm cấp Cân bằng kênh Đồ án này chú trọng vào việc khử nhiễu trong tín hiệu thoại mà cốt lõi của vấn đề này là nghiên cứu về bộ lọc số kiểu thích nghi; xem hiệu quả hoạt động của nó về khử nhiễu ngẫu nhiên như thế nào. Bộ lọc này liên tục thay đổi hệ số lọc theo một thuật toán định trước để ước lượng hàm truyền của nhiễu. Sự ước lượng càng chính xác thì quá trình khử nhiễu của bộ lọc càng đạt hiệu quả cao. Đồ án này gồm có năm chương, chương một nêu tổng quan về lọc số; chương hai nghiên cứu lý thuyết về bộ lọc thích nghi; ở chương ba, chúng ta sẽ đi nghiên cứu về khử nhiễu bằng bộ lọc thích nghi dựa trên các lý thuyết đã nêu rất rõ ở các chương trên; chương bốn, chúng ta sẽ tìm hiểu về phần cứng dùng để chạy chương trình thời gian thực về khử nhiễu kiểu thích nghi, đó là board TMS320C6711 DSK của hãng TI; và cuối cùng là chương năm sẽ là chương trình thực thi khử nhiễu kiểu thích nghi trên TMS320C6711 DSK. Để hiểu rõ hơn chúng ta xem xét cụ thể từng phần sau trong đồ án này. \ \\ 4 CHƯƠNG 1: TỔNG QUAN VỀ LỌC SỐ 1.1.MỞ ĐẦU: Lọc số là quá trình rất quan trọng của xử lý tín hiệu số, vì chính những khả năng phi thường của các bộ lọc số đã làm cho chúng trở nên rất phổ biến như ngày nay. Các bộ lọc số gồm có hai công dụng chính : phân tích tín hiệu và phục hồi tín hiệu. Phân tích tín hiệu được áp dụng khi tín hiệu mong muốn bị giao thoa với các tín hiệu khác hay bị các loại nhiễu tác động vào nó. Còn phục hồi tín hiệu là khi tín hiệu mà ta mong muốn hay cần để đánh giá, xét nghiệm bị sai lệch đi bởi nhiều yếu tố của môi truờng tác động vào; làm cho nó bị biến dạng gây ảnh hưởng đến kết quả đánh giá. Có hai kiểu lọc chính: Tương tự và số. Chúng khác nhau hoàn toàn về cấu tạo vật lý và cách làm việc. Một bộ lọc tương tự sử dụng các mạch điện tương tự được tạo ra từ các thiết bị như là điện trở, tụ điện, hay opamp, …Có các chuẩn kỹ thuật tốt đã tồn tại trong một thời gian dài cho việc thiết kế một mạch bộ lọc tương tự. Còn một bộ lọc số thì sử dụng một bộ xử lý số để hoạt động tính toán số hoá trên các giá trị được lấy mẫu của tín hiệu. Bộ xử lý có thể là một máy tính mục đích chung như một PC, hay một chíp DSP chuyên dụng. Các quá trình hoạt động của một bộ lọc số được thể hiện như hình 1.1 sau: 5 Hình 1.1: Quá trình hoạt động của một bộ lọc số. Nói chung các công việc của bộ lọc số có thể được thực hiện bởi bộ lọc tương tự( Analog Filter). Các bộ lọc tương tự có ưu điểm là giá thành rẻ, tác động nhanh, dải động( Dynamic Range) về biên độ và tần số đều rộng. Tuy nhiên các bộ lọc số thì có các cấp độ thực hiện hơn hẳn các bộ lọc tương tự, ví dụ như: các bộ lọc số thông thấp có thể có độ lợi( Gain) 1+/-0.0002 từ DC đến 1000Hz và độ lợi sẽ nhỏ hơn 0.0002 ở các tần số trên 1001Hz. Tất cả các hoạt động diễn ra chỉ trong khoảng 1Hz. Điều này không thể thực hiện được ở các bộ lọc tương tự. Và vì vậy các bộ lọc số sẽ dần dần thay thế cho các bộ lọc tương tự với các ưu điểm cụ thể như sau: 1) Một bộ lọc số thì có khả năng lập trình được, còn một bộ lọc tương tự, muốn thay đổi cấu trúc thì phải thiết kế lại bộ lọc. 2) Các bộ lọc số dễ dàng thiết kế, dễ kiểm tra và dễ thi hành trên một máy tính mục đích chung hay một trạm làm việc. 3) Đặc điểm các mạch lọc tượng tự là bị ảnh hưởng bởi sự trôi và phụ thuộc nhiều vào nhiệt độ. Các bộ lọc số thì không có các vấn đề này, và rất ổn định với cả thời gian và nhiệt độ. 4) Các bộ lọc số có thể xử lý các tín hiệu tần số thấp rất chính xác. Tốc độ của công nghệ DSP ngày càng tăng lên, làm cho các bộ lọc số có khả năng xử lý các tín hiệu tần số cao trong miền âm tần( Radio Frequency), mà trong quá khứ là lĩnh vực độc quyền của công nghệ tương tự. 5) Các bộ lọc số linh hoạt hơn nhiều trong xử lý tín hiệu, với nhiều cách khác nhau hay chính là sự xử lý thích nghi. 6 6) Các bộ xử lý DSP nhanh có thể xử lý các tổ hợp phức tạp, phần cứng tương đối đơn giản, và mật độ tích hợp rất cao. Để nâng cao chất lượng của các bộ lọc tương tự, ta chú trọng khắc phục hạn chế của linh kiện như độ chính xác, độ ổn định, sự phụ thuộc vào nhiệt độ và .v.v. Còn đối với các bộ lọc số, vốn dĩ bản thân nó đã có nhiều ưu điểm nên ta chỉ chú trọng đến các hạn chế của tín hiệu và các phương pháp thiết kế về thuật toán chương trình xử lý tín hiệu. Trong chương này, chúng ta sẽ tìm hiểu về một số lý thuyết cơ sở về lọc tín hiệu, làm tiền đề cho việc thiết kế một bộ lọc số thích nghi. 1.2.GIỚI THIỆU VỀ LỌC SỐ: [14] Trong xử lý tín hiệu số, ta thường nói tín hiệu vào và ra của một bộ lọc đều ở miền thời gian, bởi vì tín hiệu thường được tạo ra bằng cách lấy mẫu ở các thời điểm cách đều nhau. Tuy nhiên, ta cũng có thể lấy mẫu ở các vị trí cách đều nhau trong không gian hay trong một số phạm trù khác; nhưng thông thường nhất là lấy mẫu trong miền thời gian và miền tấn số. Trong xử lý tín hiệu số thì từ miền thời gian ta có thể liên hệ tổng quát đến các phạm trù khác. Ví dụ hình 1.2 sau sẽ mô tả điều đó. Mỗi bộ lọc tuyến tính đều có một đáp ứng xung, một đáp ứng bước và một đáp ứng tần số. Mỗi đáp ứng này đều chứa đầy đủ thông tin về bộ lọc, nhưng dưới mỗi dạng khác nhau. Nếu một trong ba đáp ứng được xác định thì hai đáp ứng kia cũng sẽ được tính ra trực tiếp. Cả ba đáp ứng này đều rất quan trọng, vì chúng mô tả bộ lọc ở các hoàn cảnh khác nhau. Với đáp ứng xung là đầu ra của hệ thống khi đầu vào là xung đơn vị; đáp ứng bước là đầu ra của hệ thống khi đầu vào là bước nhảy đơn vị( hay xung bậc thang). Vì hàm bước nhảy là tích phân của hàm xung đơn vị, nên đáp ứng bước chính là tích phân của đáp ứng xung. Từ đó ta có hai cách tìm đáp ứng bậc thang:  Đưa một sóng bước nhảy vào bộ lọc và xem kết quả ở đầu ra hay;  Lấy tích phân của đáp ứng xung. 7 Còn đáp ứng tần số lấy từ biến đổi Fourier của đáp ứng xung. Hình 1.2: Đáp ứng xung, đáp ứng bước và đáp ứng tần số của bộ lọc. Phương pháp trực tiếp nhất để thực hiện lọc số là dùng phép tích chập của tín hiệu vào với đáp ứng xung của bộ lọc số; khi đó đáp ứng xung được xem là cốt lõi cho việc thiết kế của bộ lọc. Một phương pháp khác để thực hiện lọc số là dùng phương pháp đệ quy. Khi bộ lọc được thực hiện bằng phép tích chập, mỗi mẫu trong tín hiệu ra được tính toán bằng cách tổ hợp có trọng số các mẫu trong tín hiệu vào. Các bộ lọc kiểu đệ quy mở rộng thêm quá trình trên bằng cách sử dụng cả các trị số đã tính được từ tín hiệu ra, bên cạch các điểm lấy từ tín hiệu vào; thay vì dùng một lõi lọc, các bộ lọc đệ quy được xác định bởi một dãy hệ số đệ quy. Các bộ lọc đệ quy còn được gọi là các bộ lọc có đáp ứng xung dài vô hạn IIR, còn các bộ lọc thực hiện theo phương pháp chập thì gọi là các bộ lọc có đáp ứng xung dài hữu hạn FIR. Có nhiều cách để con người biểu diễn thông tin qua tín hiệu như trong các kiểu điều chế hay mã hóa tín hiệu: AM, FM, PCM,…Còn các tín hiệu sinh ra trong tự nhiên thì chỉ có hai cách biểu diễn là theo miền thời gian hay là ở miền tần số. Thông tin được thể hiện trong miền thời gian được mô tả bằng độ lớn của sự kiện tại thời điểm xuất hiện. Mỗi mẫu trong tín hiệu cho thấy cái gì xuất hiện ở thời điểm ấy và độ lớn của nó. Trái lại, thông tin được biểu thị trong miền tần số có tính chất 8 gián tiếp hơn và mỗi mẫu tín hiệu đơn độc không thể thể hiện được thông tin đầy đủ mà phải trong mối quan hệ nhiều điểm của tín hiệu. Từ đó ta thấy tầm quan trọng của đáp ứng bước và đáp ứng tần số; đáp ứng bước mô tả sự biến đổi của thông tin trong miền thời gian bởi hệ thống còn đáp ứng tần số cho thấy sự biến đổi của thông tin trong miền tần số. Với mỗi ứng dụng khác nhau thì tầm quan trọng của hai loại đáp ứng cũng khác nhau. 1.3.CÁC THÔNG SỐ CỦA HỆ THỐNG Ở MIỀN THỜI GIAN: [14] Gồm có ba thông số quan trọng sau. 1.3.1.Tốc độ chuyển đổi hay thời gian lên( Risetime): Tốc độ chuyển đổi thường được thể hiện bằng thời gian lên( hay số mẫu) giữa mức biên độ 10% đến 90%. Thời gian lên có thể không nhanh do nhiều nguyên nhân như tạp âm, hạn chế sẵn có của hệ thống.v.v. 1.3.2.Gợn sóng nhô( Overshoot) trong đáp ứng bậc thang: Thông thường phải loại bỏ gợn sóng nhô vì nó làm thay đổi biên độ các mẫu trong tín hiệu; đây là méo tín hiệu cơ bản của thông tin chứa trong miền thời gian. Gợn sóng nhô có thể do đại lượng đang đo hoặc do bộ lọc đang sử dụng. 1.3.3.Pha tuyến tính: Pha tuyến tính hay là sự đối xứng của nửa trên và nửa dưới của đáp ứng xung. Sự đối xứng này là cần thiết để làm cho các cạnh lên có dạng giống các cạch xuống. Hình 1.3 sau sẽ cho ta thấy các thông số đó của hai loại bộ lọc có chất lượng khác nhau. 9 Hình 1.3: Các thông số của hệ thống ở miền thời gian. 1.4.CÁC THÔNG SỐ CỦA HỆ THỐNG Ở MIỀN TẦN SỐ: [14] Gồm các thông số sau:  Dải thông( Passband): là dải gồm các tần số được bộ lọc cho qua.  Dải chắn( Stopband): là dải chứa các tần số bị ngăn cản.  Dải chuyển tiếp( Transitionband): là dải ở vị trí trung gian của dải thông với dải chắn.  Độ dốc xuống nhanh: là ứng với mỗi dải chuyển tiếp rất hẹp.  Tần số cắt: là tần số phân cách giữa dải thông và dải chuyển tiếp. Trong thiết kế tương tự, tần số cắt thường được xác định tại nơi biên độ giảm còn 0.707( tương ứng -3dB). Các bộ lọc số ít được tiêu chuẩn hóa và có thể xác định các tần số cắt tại các mức biên độ 99%, 90%, 70.7%, và 50%. Hình 1.4 sau thể hiện các đáp ứng của các bộ lọc cơ bản. 10 Hình 1.4: Các đáp ứng tần số của các bộ lọc căn bản. Để phân tích các tần số kề sát nhau, bộ lọc phải có độ dốc xuống nhanh. Muốn cho các tần số của dải thông lọt qua hoàn toàn bộ lọc, phải không có gợn sóng dải thông. Cuối cùng, muốn ngăn chặn các tần số của dải chắn, cần có độ suy giảm dải chắn lớn; các điều đó được biểu diễn ở hình sau. Về mặt pha, trước hết hệ số pha không quan trọng trong hầu hết các ứng dụng ở miền tần số. Chẳng hạn, pha của một tín hiệu âm thanh hầu như hoàn toàn bất kỳ và không chứa thông tin hữu ích nào. Thứ hai, nếu pha là quan trọng thì ta lại có thể dễ dàng thực hiện các bộ lọc số có đáp ứng pha tuyến tính, tức là tất cả tần số đi qua bộ lọc không bị lệch pha. Trong khi các bộ lọc tương tự rất kém về mặt này. Hình 1.5 sau thể hiện ba thông số về đặc điểm làm việc của bộ lọc trong miền tần số. 11 Hình 1.5: Các thông số của hệ thống ở miền tần số. 1.5.CÁC BỘ LỌC THÔNG THẤP, THÔNG CAO, THÔNG DẢI, VÀ CHẮN DẢI: [4] & [14] Việc thiết kế các bộ lọc số thực tế đều đi từ lý thuyết các bộ lọc số lý tưởng; gồm có bốn bộ lọc số lý tưởng là : Bộ lọc số thông thấp. Bộ lọc số thông cao. Bộ lọc số thông dải. Bộ lọc số chắn dải. Lọc ở đây có nghĩa là lọc tần số chính, vì vậy mà tất cả các đặc trưng của lọc tần số đều được cho theo đáp ứng biên độ. Các bộ lọc này được thiết kế bằng cách xuất phát từ một bộ lọc thông thấp, rồi chuyển đổi sang đáp ứng yêu cầu. Vì vậy ta chỉ khảo sát điển hình bộ lọc thông thấp thôi. Có hai phương pháp chuyển đổi từ thông thấp sang thông cao là: nghịch đảo phổ( Spectral Inversion) và đảo chiều phổ( Spectral Reversal). Hình 1.6 sau đây thể hiện sự nghịch đảo phổ. 12 Hình 1.6: Sự nghịch đảo phổ. Phải thực hiện hai bước để đổi đáp ứng xung thông thấp thành thông cao: đầu tiên đổi dấu mỗi mẫu trong lõi lọc; sau đó thêm một mẫu vào tại tâm đối xứng. Như thế ta được đáp ứng xung lọc thông cao thể hiện ở hình c), và đáp ứng tần số thể hiện ở hình d). Sự nghịch đảo phổ đã lật ngược đáp ứng tần số, đổi dải thông thành dải chắn và ngược lại. Phương pháp thứ hai để chuyển đổi thông thấp thành thông cao, đó là đảo chiều phổ, được thể hiện ở hình 1.7 sau. Cũng tương tự như trên, đáp ứng xung của bộ lọc thông thấp ở hình a) tương ứng với đáp ứng tần số ở hình b). Đáp ứng xung của bộ lọc thông cao ở hình c) được tạo ra bằng cách đổi dấu các mẫu tín hiệu cách trước; điều này đã đảo lộn miền tần số từ trái sang phải. Tần số cắt của bộ lọc thông thấp trong ví dụ trên là 0.15, còn tần số cắt của bộ lọc thông cao là 0.35. Đổi dấu của mỗi tín hiệu cách một tương đương với nhân lõi lọc với một sóng sine có tần số 0.5. Điều này có tác dụng dịch chuyển miền tần số một khoảng tần số bằng 0.5. 13 Hình 1.7: Sự đảo chiều phổ. Và hai hình sau đây cho chúng ta thấy cách kết hợp các đáp ứng xung của bộ lọc thông thấp và bộ lọc thông cao để tạo nên các bộ lọc thông dải và bộ lọc chắn dải. Khi cộng các đáp ứng xung sẽ tạo ra một bộ lọc chắn dải, còn khi nhân chập các đáp ứng xung sẽ cho một bộ lọc thông dải. Hình 1.8: Thiết kế bộ lọc thông dải. 14 Hình 1.9: Thiết kế bộ lọc chắn dải. Các bộ lọc số lý tưởng đều không thể thực hiện được về vật lý mặc dù ta đã xét trường hợp h(n) thực bởi vì chiều dài của h(n) là vô cùng, hơn nữa h(n) là không nhân quả, tức là: L[h(n)] = [- , + ] =  h(n)  0 khi n < 0. Các bộ lọc số thực tế được đặc trưng bởi các thông số kỹ thuật trong miền tần số liên tục  có bốn tham số chính là: 1 : độ gợn sóng ở dải thông. 2 : độ gợn sóng ở dải chắn. p : tần số giới hạn( biên tần ) dải thông. s : tần số giới hạn( biên tần ) dải chắn. Ngoài ra còn có tham số phụ là:  s - p : bề rộng dải quá độ. Ví dụ minh họa đối với bộ lọc thông thấp bằng hình 1.10 sau: 15 |H(ej )| 1+ 1 1 1- 1 2 0 Hình 1.10: Các tham số kỹ thuật của bộ lọc thông thấp. 1.6.CẤU TRÚC CĂN BẢN CỦA CÁC BỘ LỌC SỐ: [2] & [3] & [4] & [5] Có hai kiểu bộ lọc số căn bản đó là: bộ lọc FIR và IIR; Các bộ lọc FIR có hai đặc điểm quan trọng so với các bộ lọc IIR: thứ nhất, các bộ lọc FIR chắc chắn ổn định, thậm chí sau khi các hệ số của bộ lọc đã được lượng tử hóa. Thứ hai, các bộ lọc FIR dễ dàng được ràng buộc để có pha tuyến tính. Và sau đây ta sẽ đi khảo sát từng loại bộ lọc đó; đầu tiên chúng ta xem lại phép biến đổi z, là công cụ hữu hiệu cho việc phân tích và thiết kế các bộ lọc số. 1.6.1.Bộ lọc FIR: 1.6.1.1.Phép biến đổi Z( Z-Transform): Biến đổi Z là công cụ hữu hiệu trong việc phân tích các tín hiệu và hệ thống thời gian rời rạc, và là công cụ tương ứng với phép biến đổi Laplace đối với các tín hiệu và hệ thống thời gian liên tục; nó có thể được sử dụng để giải các phương trình sai phân hệ số hằng, tính toán đáp ứng của hệ thống tuyến tính và bất biến đổi với tín hiệu ngỏ vào cho trước, thiết kế các bộ lọc tuyến tính. Biến đổi Z của tín hiệu thời gian rời rạc x(n) được định nghĩa bởi:  Dải quá độ p  Dải thông s Dải chắn 16 X(z)=     n nznx )( (1.1) Với z= rej là một biến phức. Để ký hiệu, nếu x(n) có biến đổi z là X(z), ta viết: x(n)  z X(z). Biến đổi z có thể được xem như là biến đổi Fourier thời gian rời rạc của một chuỗi hàm mũ có trọng số. cụ thể với z = rej : X(z) =     n nznx )( =      n nj nxre )( =      n jnn enxr )( (1.2) Định nghĩa mặt phẳng z phức: z = Re(z) + jIm(z) = rej . Bằng các phân tích thành thừa số các đa thức tử số và mẫu số, biến đổi z hữu tỉ được biểu diễn như sau: X(z) = C.         p k k q k k z z 1 1 1 1 )1( )1(   (1.3) Các nghiệm của đa thức tử số, k , được gọi là các zero của X(z) còn các nghiệm của đa thức mẫu số, k , được gọi là các cực( Pole) của X(z). Miền hội tụ( ROC):   || z . Các cặp biến đổi z thông dụng thể hiện ở bảng 1.1 sau: Bảng 1.1: Các cặp biến đổi z thông dụng. Chuỗi Biến đổi z Miền hội tụ )(n )(nun - )1( nun n )(nun 1 11 1  z 11 1  z Mọi z |z| > | | |z| < | | 17 Các tính chất của biến đổi z được cho ở bảng 1.2 sau: Bảng 1.2: Các tính chất của biến đổi z. Tính chất Chuỗi Biến đổi z Miền hội tụ Tuyến tính Tịnh tiến Đảo ngược Nhân hàm mũ Phép chập Liên hợp Đạo hàm ax(n) + bx(n) x(n-n0) x(-n) n x(n) x(n)*h(n) x*(n) nx(n) aX(z) + bX(z) z- 0n X(z) X(z-1) X( 1 z) X(z)H(z) X*(z*) -z dz zdX )( Chứa Rx Ry Rx 1/Rx | |Rx Chứa Rx Rh Rx Rx 1.6.1.2.Các bộ lọc FIR: Phương trình tích chập để thiết kế bộ lọc FIR tổng quát là: y(n) =     0 )()( k knxkh (1.4) Trong việc thiết kế, chúng ta sử dụng một số hữu hạn là N; và phương trình trên được viết lại như sau: y(n) =    N k knxkh 0 )()( (1.5) -n )1( nun Cos(n 0 )u(n) Sin(n 0 )u(n)  21 1 1    z z    21 1 1    z z   21 0 1 0 )(cos21 )(cos1     zz z   21 0 1 0 )(cos21 )(sin    zz z   |z| > | | |z| < | | |z| >1 |z| >1 18 h(N) h(N-1) h(1) h(0) Ở đây n là thời gian rời rạc, y(n) là đáp ứng đầu ra đối với tín hiệu đầu vào rời rạc x(n) tại thời điểm n, h(n) là đáp ứng xung của bộ lọc. Biến đổi z phương trình(1.4) được : Y(z) = h(0)X(z) + h(1)z-1X(z) + … + h(N)z-NX(z) (1.6) Phương trình (1.6) biểu diễn một phép tích chập theo thời gian giữa các hệ số và các mẫu tín hiệu vào. Phép tích chập này tương đương với một phép nhân trong miền tần số, hay là: Y(z) = H(z)X(Z) (1.7) Ở đây H(z) là biến đổi z của h(k), là hàm truyền: H(z) =    N k kzkh 0 )( = h(0) + h(1)z-1 + … + h(N)z-N = N NN z Nhzhzh )(...)1()0( 1   (1.8) Hình 1.11 sau thể hiện một cấu trúc bộ lọc FIR biểu diễn phương trình(1.5) hay phương trình(1.6): Hình 1.11: Cấu trúc bộ lọc FIR thể hiện các bộ trễ. Phương trình(1.4) cho thấy có thể thực hiện một bộ lọc FIR nếu biết tín hiệu vào ở thời điểm n là x(n) và các tín hiệu vào bị làm trễ là x(n-k