Lý thuyết điều khiển toán học là một trong những lĩnh vực toán học ứng
dụng quan trọng mới được phát triển kho ảng 50 năm trở l ại đây. Công cụ chính
của lý thuyết điều khiển toán học là những mô hình và các phương pháp toán học
giải quyết những vấn đề định tính và giải số các hệ thống điều khiển. Rất nhiều
bài toán trong khoa học, công nghệ, kỹ thuật và kinh tế được mô tả bởi các hệ
phương trình vi phân chứa tham s ố đi ều khiển và cần đến những công cụ toán học
để tìm ra lời giải.
Một trong những vấn đề đầu tiên và quan trọng nhất trong lý thuyết điều
khiển hệ thống là lý thuyết điều khiển được, tức là tìm một chiến lược điều khiển
sao cho có thể chuyển hệ thống từ một trạng thái này sang một trạng thái khác.
Bài toán điều khiển được liên quan chặt chẽ đến các bài toán khác như bài toán
tồn tại điều khiển tối ưu, bài toán ổn định và ổn định hóa, bài toán quan sát
được,
Mặc dù lý thuyết điều khiển đã được hình thành cách đây khoảng 50 năm,
nhưng nhiều bài toán và vấn đề về điều khiển như: điều khiển được hệ phương
trình vi phân ẩn tuyến tính dừng và không dừng c ó hạn chế trên bi ến đi ều khiển,
điều khiển được hệ phương trình vi phân và sai phân ẩn tuyến tính có chậm,
những bài toán liên quan giữa điều khiển được, quan sát được và ổn định hoá , ,
hiện nay vẫn còn mang tính thời sự và được rất nhiều nhà toán học tr ên thế gi ới
cũng như trong nước quan tâm.
Phương trình vi phân thường đã được nghiên cứu từ rất lâu, khoảng 200 năm
trở lại đây. Tuy nhiên lý thuyết phương trình vi phân ẩn , trong đó có phương trình
vi phân đại số tuyến tính lại mới được th ật sự quan tâm trong vòng 40 năm trở lại
đây. Phương trình vi phân đại số tuy ến tính có rất nhiều điểm đặc biệt mà ta
không thể tìm thấy ở phương trình vi phân thường, ví dụ: ma trận hệ số là ma trận
suy biến, không có tính chất “ nhân quả” giữa đầu vào và đầu ra, , làm cho việc
nghiên cứu những vấn đề liên quan trở nên phức tạp nhưng lại rất hấp dẫn. Hiện
nay, mặc dù đã có nhi ều cố gắng khảo sát những tính chất đặc biệt ấy, nhưng việc
nghiên cứu hệ phương trình vi phân suy biến vẫn còn l à th ời sự, b ởi còn rất nhi ều
câu hỏi chưa được gi ải đáp.
Mục đích của luận văn này là trình bày các kết quả mở rộng tiêu chuẩn điều
khiển được của các hệ đi ều khiển mô tả bởi phương trình vi phân thường – tiêu
chuẩn Kalman – cho hệ phương trình vi phân đại số tuyến tính dừng và không
dừng. Luận văn cố gắng trình bày một cách có hệ thống từ đơn giản đến phức tạp,
từ phương trình vi phân đại số tuyến tính dừng đến phương trình vi phân đại số
tuyến tính không dừng. Tiêu chuẩn điều khiển được dạng Kalman được đặc trưng
thông qua tiêu chuẩn về hạng của ma trận hệ số. Thống nhất đi theo hướng nghiên
cứu đó, trước ti ên luận văn trình bày ti êu chuẩn điều khiển được mở rộng cho hệ
phương trình vi phân đại số thông qua ma trận hệ số của các hệ phương trình vi
phân ẩn tuyến tính dừng và sau đó l à cho hệ mô tả bởi hệ phương trình vi phân ẩn
tuy ến tính không dừng. Các ti êu chuẩn điều khi ển được này nói chung phức tạp
hơn rất nhiều so với tiêu chuẩn Kalman.
67 trang |
Chia sẻ: oanh_nt | Lượt xem: 2213 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Luận văn Tính điều khiển được hệ phương trình vi phân đại số tuyến tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
§¹i häc th¸i nguyªn
TRƯỜNG ®¹i häc SƯ ph¹m
Vi diÖu minh
TÝnh ®iÒu khiÓn ĐƯỢC
hÖ PHƯƠNG tr×nh vi ph©n ®¹i sè
tuyÕn tÝnh
Chuyªn ngµnh: Gi¶i tÝch
M· sè : 60.46.01
LuËn v¨n Th¹c sü to¸n häc
Người hướng dẫn: PGS.TS. TẠ DUY PHƯỢNG
Th¸i Nguyªn - 2008
1
Môc lôc
Trang
Lêi nãi ®Çu.. ............................................................................................. 1
Chƣơng 1 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH VỚI HỆ
SỐ HẰNG ...................................................................................6
§1 Tính giải được của hệ phương trình vi phân đại số tuyến tính với
hệ số hằng ........................................................................................ 6
§2 Tính điều khiển được của hệ phương trình vi phân đại số tuyến tính
với hệ số hằng. ............................................................................... 35
Chƣơng 2 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH CÓ HỆ SỐ
BIẾN THIÊN .............................................................................................. 41
§1 Tính giải được của hệ phương trình vi phân đại số tuyến tính với hệ số
biến thiên… ................................................................................... 41
§2 Tính điều khiển được của hệ phương trình vi phân đại số tuyến tính với
hệ số biến thiên .............................................................................. 63
KÕt luËn................................................................................................... 72
Tµi liÖu tham kh¶o. ............................................................................. 74
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2
LỜI NÓI ĐẦU
Lý thuyết điều khiển toán học là một trong những lĩnh vực toán học ứng
dụng quan trọng mới được phát triển khoảng 50 năm trở lại đây. Công cụ chính
của lý thuyết điều khiển toán học là những mô hình và các phương pháp toán học
giải quyết những vấn đề định tính và giải số các hệ thống điều khiển. Rất nhiều
bài toán trong khoa học, công nghệ, kỹ thuật và kinh tế được mô tả bởi các hệ
phương trình vi phân chứa tham số điều khiển và cần đến những công cụ toán học
để tìm ra lời giải.
Một trong những vấn đề đầu tiên và quan trọng nhất trong lý thuyết điều
khiển hệ thống là lý thuyết điều khiển được, tức là tìm một chiến lược điều khiển
sao cho có thể chuyển hệ thống từ một trạng thái này sang một trạng thái khác.
Bài toán điều khiển được liên quan chặt chẽ đến các bài toán khác như bài toán
tồn tại điều khiển tối ưu, bài toán ổn định và ổn định hóa, bài toán quan sát
được,…
Mặc dù lý thuyết điều khiển đã được hình thành cách đây khoảng 50 năm,
nhưng nhiều bài toán và vấn đề về điều khiển như: điều khiển được hệ phương
trình vi phân ẩn tuyến tính dừng và không dừng có hạn chế trên biến điều khiển,
điều khiển được hệ phương trình vi phân và sai phân ẩn tuyến tính có chậm,
những bài toán liên quan giữa điều khiển được, quan sát được và ổn định hoá, …,
hiện nay vẫn còn mang tính thời sự và được rất nhiều nhà toán học trên thế giới
cũng như trong nước quan tâm.
Phương trình vi phân thường đã được nghiên cứu từ rất lâu, khoảng 200 năm
trở lại đây. Tuy nhiên lý thuyết phương trình vi phân ẩn, trong đó có phương trình
vi phân đại số tuyến tính lại mới được thật sự quan tâm trong vòng 40 năm trở lại
đây. Phương trình vi phân đại số tuyến tính có rất nhiều điểm đặc biệt mà ta
không thể tìm thấy ở phương trình vi phân thường, ví dụ: ma trận hệ số là ma trận
suy biến, không có tính chất “nhân quả” giữa đầu vào và đầu ra,…, làm cho việc
nghiên cứu những vấn đề liên quan trở nên phức tạp nhưng lại rất hấp dẫn. Hiện
nay, mặc dù đã có nhiều cố gắng khảo sát những tính chất đặc biệt ấy, nhưng việc
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3
nghiên cứu hệ phương trình vi phân suy biến vẫn còn là thời sự, bởi còn rất nhiều
câu hỏi chưa được giải đáp.
Mục đích của luận văn này là trình bày các kết quả mở rộng tiêu chuẩn điều
khiển được của các hệ điều khiển mô tả bởi phương trình vi phân thường – tiêu
chuẩn Kalman – cho hệ phương trình vi phân đại số tuyến tính dừng và không
dừng. Luận văn cố gắng trình bày một cách có hệ thống từ đơn giản đến phức tạp,
từ phương trình vi phân đại số tuyến tính dừng đến phương trình vi phân đại số
tuyến tính không dừng. Tiêu chuẩn điều khiển được dạng Kalman được đặc trưng
thông qua tiêu chuẩn về hạng của ma trận hệ số. Thống nhất đi theo hướng nghiên
cứu đó, trước tiên luận văn trình bày tiêu chuẩn điều khiển được mở rộng cho hệ
phương trình vi phân đại số thông qua ma trận hệ số của các hệ phương trình vi
phân ẩn tuyến tính dừng và sau đó là cho hệ mô tả bởi hệ phương trình vi phân ẩn
tuyến tính không dừng. Các tiêu chuẩn điều khiển được này nói chung phức tạp
hơn rất nhiều so với tiêu chuẩn Kalman.
Nội dung của luận văn gồm hai chương:
Chương 1 nghiên cứu hệ phương trình vi phân đại số tuyến tính với hệ số
hằng.
Mục 1 chương 1 trình bày hai cách tiếp cận hệ phương trình vi phân đại số
tuyến tính nhằm nghiên cứu tính chất tập nghiệm của phương trình dạng
Ex( t ) Ax ( t ) Bu ( t )
trong đó E là ma trận nói chung suy biến.
Cách tiếp cận thứ nhất là thông qua cặp ma trận chính quy để đưa phương
trình trên về hệ:
x1( t ) A 1 x 1 ( t ) B 1 u 1 ( t );
Nx2( t ) x 2 ( t ) B 2 u 2 ( t ), t 0,
trong đó phương trình thứ nhất là phương trình vi phân thường và phương trình
thứ hai là phương trình vi phân với ma trận lũy linh.
Cách tiếp cận thứ hai nhằm nghiên cứu cấu trúc tập nghiệm của phương trình
vi phân với hệ số hằng thông qua ma trận cơ sở. Mục này giới thiệu khái niệm
toán tử hiệu chỉnh, nghiệm của phương trình vi phân đại số được tìm thông qua
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
4
toán tử hiệu chỉnh . Công thức nghiệm này cho thấy rõ hơn sự khác biệt của
phương trình vi phân suy biến so với phương trình vi phân thường, ngoài ra việc
tìm ra cấu trúc tập nghiệm còn nhằm áp dụng vào việc nghiên cứu tính điều khiển
được của hệ phương trình vi phân tuyến tính được trình bày ở mục 2.
Mục 2 trình bày tính điều khiển được của hệ phương trình vi phân đại số
tuyến tính với hệ số hằng theo [6], trong đó tiêu chuẩn điều khiển được là mở rộng
của tiêu chuẩn hạng Kalman.
Chương 2 nghiên cứu cấu trúc tập nghiệm và tính điều khiển được của hệ
phương trình vi phân đại số tuyến tính có hệ số biến thiên.
Mục 1 của chương 2 trình bày tính giải được của phương trình vi phân tuyến
tính không dừng theo cuốn sách [7]. Bằng cách tác động toán tử hiệu chỉnh trái
vào phương trình vi phân ẩn, ta có thể đưa phương trình từ phức tạp về đơn giản
để dễ nghiên cứu hơn.
Mục 2 của chương 2 trình bày tính điều khiển được hệ phương trình vi phân
đại số với hệ số biến thiên theo [9]. Thống nhất với mục 1, mục 2 cũng dùng toán
tử hiệu chỉnh trái để đưa việc nghiên cứu tiêu chuẩn điều khiển được hệ suy biến
không dừng về nghiên cứu hệ đơn giản hơn.
Mặc dù luận văn chủ yếu là trình bày lại các kết quả trong [6], [7], [8], [9],
nhưng chúng tôi cố gắng thể hiện những lao động của mình trong quá trình đọc,
nghiên cứu và mở rộng các kết quả ấy cho hệ phương trình vi phân đại số tuyến
tính. Thí dụ: Mục 1.1 chương 1 trình bày công thức nghiệm tường minh của
phương trình vi phân tuyến tính không dừng với ma trận luỹ linh là kết quả của
tác giả, đã được báo cáo tại Hội nghị nghiên cứu khoa học sau đại học do Đại học
Sư phạm Thái Nguyên tổ chức (Thái Nguyên, tháng 7-2008) và được đăng trong
[3]. Chúng tôi cũng cố gắng chi tiết hóa hoặc tìm ra những cách chứng minh khác
với cách chứng minh trong [6], [7], [8], [9]. Trong toàn bộ luận văn, chúng tôi cố
gắng diễn giải những định lý, bổ đề một cách dễ hiểu nhất. Chúng tôi hy vọng
rằng, luận văn cho thấy rõ hơn sự phát triển trong nghiên cứu tiêu chuẩn điều
khiển được hệ phương trình vi phân từ đơn giản đến phức tạp, từ phương trình vi
phân thường đến phương trình vi phân ẩn suy biến với hệ số biến thiên.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
5
Luận văn được hoàn thành dưới sự hướng dẫn khoa học của PGS – TS Tạ
Duy Phượng. Xin được tỏ lòng cám ơn chân thành nhất tới Thầy.
Tác giả xin cám ơn chân thành tới Trường Đại học Sư phạm – Đại học Thái
Nguyên, nơi tác giả đã nhận được một học vấn sau đại học căn bản.
Và cuối cùng, xin cám ơn gia đình, bạn bè, đồng nghiệp đã cảm thông, ủng
hộ và giúp đỡ trong suốt thời gian tác giả học Cao học và viết luận văn.
Thái Nguyên, ngày 18 tháng 9 năm 2008
Tác giả
Vi Diệu Minh
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
6
Chƣơng 1 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ
TUYẾN TÍNH VỚI HỆ SỐ HẰNG
§1 TÍNH GIẢI ĐƢỢC CỦA HỆ PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ
TUYẾN TÍNH VỚI HỆ SỐ HẰNG
1.1 Hệ phƣơng trình vi phân đại số tuyến tính với ma trận lũy linh
Xét phương trình vi phân đại số tuyến tính dạng
, , (1.1.1.1)
Nx( t ) x ( t )t ³ 0 B ( t ) u ( t )
trong đó N là ma trận vuông cấp , không phụ thuộc vào t và là ma trận lũy
n2
linh bậc h , tức là với là ma trận vuông cấp có tất cả các thành
h
N = 0 n2
n2 0n2
phần bằng 0; là một hàm khả vi hầu khắp nơi nhận giá trị trong không gian
xt()
¡ n2 và thỏa mãn phương trình (1.1.1.1) hầu khắp nơi (là nghiệm của phương trình
vi phân (1.1.1.1)); là ma trận cấp và là vectơ hàm m chiều.
Bt() nm2 ´ ut()
Trước tiên ta chứng minh Bổ đề sau (xem [3]).
Bổ đề 1.1
Giả sử và tương ứng là ma trận hàm và vectơ hàm có các thành phần là
Bt() ut()
các hàm khả vi liên tục đến cấp h , trong đó h là bậc của ma trận lũy linh N . Khi
ấy với mọi ta có
1 ££kh
k 1
k( k ), k (1.1.1. 12) ( k 1) k 1 i ( k 1 i ) ( i )
N x( t ) N x ( t ) N Ck 1 B ( t ) u ( t )
i 0
trong đó ()k là đạo hàm cấp k của vectơ hàm , tương tự, ()i là đạo
xt() xt() ut()
hàm cấp i của vectơ hàm , còn ()s là đạo hàm cấp s của ma trận hàm
ut() Bt()
, k ! với 0 ££ik.
Bt() C i =
k i!( k- i )!
Chứng minh
Nhân phương trình (1.1.1.1) với ma trận N rồi lấy đạo hàm hai vế ta được:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
7
.
N2 x( t ) Nx ( t ) N B ( t ) u ( t ) B ( t ) u ( t ) k 1
LạiN tiếp tục nhânk phương trình1 này x với N ( rồi k lấy đạo hàm 1) hai vế ta( được: t ) N k x ( k ) ( t ) N k C i B ( k i ) ( t ) u ( i ) ( t ) B ( k 1 i ) ( t ) u ( i 1) ( t )
3 2 2 k 1
N x( t ) N x ( t ) N B ( t ) u ( t ) Bi ( t0 ) u ( t ) B ( t ) u ( t ) B ( t ) u ( t )
2
2 2i (2 i ) ( i )
N x( t ) N C2 B ( t ) u ( t ).
k( k )i 0 k 0 ( k ) k 0 ( k 1)
Như vậy, công thứcN (1.1.1.2) đúng với x . ( t ) N C B ( t ) u ( t ) N C B ( t ) u ( t )
s = 1,2, 3 kk11
Giả sử công thức (1.1.1.2) đúng với mọi . Ta sẽ chứng minh nó đúng
ks1£< k h ( k 1) k 1 ( k 2) k 2 ( k 2)
với . Thật vậy, theo qui nạp ta có
sk=+1N Ck1 B( t ) u ( t ) N C k 1 B ( t ) u ( t ) N C k 1 B ( t ) u ( t )
k 1
k( k ). k 1 ( k 1) k 1 i ( k 1 i ) ( i )
N xk ( t )2 N (k x 3) ( t ) N Ck 1 B k ( t s ) u 1 ( t ( ) k s 1) ( s 1) k s 1 ( k s ) ( s )
i 0
NCk 1B( t ) u ( t ) ... N Ckk 1 B ( t ) u ( t ) N C 1 B ( t ) u ( t )
Nhân phương trình này với N rồi lấy đạo hàm hai vế ta được:
k s( k s ) ( s ) k s ( k 1 s ) ( s 1)
N Ckk11 B( t ) u ( t ) N C B ( t ) u ( t )
k k2 (2) ( k 2) k k 2 ( k 1)
...N Ckk11 B ( t ) u ( t ) N C B ( t ) u ( t )
kk1 (k 1) k k 1 ( k )
Nk C( kk )1 B() t u k 0(t ( ) k ) N Ck 1 B k ( t ) u 0 ( t ) 1 ( k 1)
N x( t ) N Ck1 B ( t ) u ( t ) N C k 1 C k 1 B ( t ) u ( t )
Nk C1 C 2 B ( k 2)( t ) u ( t ) ... N k C s 1 C s B ( k s ) ( t ) u ( s ) ( t )
k1 k 1 k 1 k 1
k k2 k 1 ( k 1) k k 1 ( k )
...N Ck1 C k 1 B ( t ) u ( t ) N C k 1 B ( t ) u ( t ).
Nhưng (k nên- 1!)
C i =
k- 1 i!( k-- 1 i )!
00; kk- 1
CCkk- 1 ==1 CCkk- 1 ==1
và
s1 s s
Ck11 C k C k
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Nkk1 x ( 1) () t
k( k ) k 0 ( k ) k 0 1 ( k 1)
N x( t ) N Ck1 B ( t ) u ( t ) N C k 1 C k 1 B ( t ) u ( t )
k1 2 ( k 2) k s 1 s ( k s ) ( s )
N Ck1 C k 1 B( t ) u ( t ) ... N C k 1 C k 1 B ( t ) u ( t )
k k2 k 1 ( k 1) k k 1 ( k )
...N Ck1 C k 1 B ( t ) u ( t ) N C k 1 B ( t ) u ( t )
kk() k0 ( k ) k 1 ( k 1)
Nx (t ) N Ckk B ( t ) u ( t ) N C B ( t ) u ( t )
k82 ( k 2) k s ( k s ) ( s )
nên
N Ckk B( t ) u ( t ) ... N C B ( t ) u ( t )
k k1 ( k 1) k k ( k )
...N Ckk B ( t ) u ( t ) N C B ( t ) u ( t )
k
k( k ) k s ( k s ) ( s )
N x( t ) N Ck B ( t ) u ( t ).
s 0
Vậy theo nguyên lý qui nạp, công thức (1.1.1.2) được chứng minh.
Từ Bổ đề 1.1 ta có công thức nghiệm sau đây của hệ (1.1.1.1).
Mệnh đề 1.1 ([3])
Giả sử là ma trận hàm và vectơ hàm có các thành phần là các hàm khả
Bt() ut()
vi liên tục đến cấp h . Khi ấy nghiệm của hệ phương trình vi phân tuyến tính suy
biến (1.1.1.1) được tính theo công thức
h 1
, () k (1.1.1.3)
x( t ) Fk ( t ) u ( t )
k 0
h- 1
trong đó . s k() s- k
Fks( t )=-å N C B ( t )
sk=
Chứng minh
Viết lại (1.1.1.2) với ta được
kh= 1,2,...,
; 0
Nx( t ) x ( t ) C0 B ( t ) u ( t )
2; 0 1
N x( t ) Nx ( t ) NC11 B ( t ) u ( t ) NC B ( t ) u ( t )
3 2; 2 0 2 1 2 2
N x( t ) N x ( t ) N C2 B ( t ) u ( t ) N C 2 B ( t ) u ( t ) N C 2 B ( t ) u ( t )
……….
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
k 1
k( k )9 k 1 ( k 1) k 1 i ( k 1 i ) ( i )
N x( t ) N x ( t ) N Ck 1 B ( t ) u ( t )
i 0
k1 ( k 1) k 1 0 ( k 1) k 1 1 ( k 2)
N x( t ) N Ckk11 B ( t ) u ( t ) N C B ( t ) u ( t )
k1 i ( k 1 i ) ( i ) k 1 k 1 ( k 1)
...N Ckk11 B ( t ) u ( t ) ... N C B ( t ) u ( t ).
………
h 1
h( h ) h 1 ( h 1) h 1 i ( h 1 i ) ( i )
N x( t ) N x ( t ) N Ch 1 B ( t ) u ( t )
i 0
h1 ( h 1) h 1 0 ( h 1) h 1 1 ( h 2)
N x( t ) N Chh11 B ( t ) u ( t ) N C B ( t ) u ( t )
...Nh1 C i B ( h 1 i ) ( t ) u ( i ) ( t ) N h 1 C h 1 B ( t ) u ( h 1) ( t ).
hh11hh11
s0 ( s ) s 1 ( s 1)
Cộng0 vế với vế cácx đẳng ( thức t này ) và để ý đến tính chất lũy N linh của ma C trận ssN , B ( t ) u ( t ) N C B ( t ) u ( t )
ss01
tức là N h = 0 , sau khi nhóm các số hạng ở hai vế, ta được
h 1
s k( s k ) ( k ) h 1 ( h 1)
...N Cs B ( t ) u ( t ) ... N B ( t ) u ( t )
sk
h 1
()k
x( t ) Fk ( t ) u ( t ).
k 0
h 1
Từ đây suy ra ()k
x( t ) Fk ( t ) u ( t ).
k 0
Vậy Mệnh đề 1.1 được chứng minh.
Trong trường hợp là ma trận hằng ta có
B() tº B
Hệ quả 1.1 ([6], trang 17)
Giả sử là ma trận hằng và vectơ hàm có các thành phần là các hàm
B() tº B ut()
khả vi liên tục đến cấp h . Khi ấy nghiệm của phương trình
(1.1.1.4)
Nx( t ) x ( t ) Bu ( t )
được tính theo công thức
h 1 . (1.1.1.5)
x( t ) Nkk Bu() ( t )
k 0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
10
Chứng minh
Khi thì
B() tº B
h- 1
s k() s- k k k k
Fk( t )= -å N C s B ( t ) = - N C k B = - N B
sk=
nên ta có ngay công thức (1.1.1.5).
1.2 Công thức nghiệm của phƣơng trình vi phân đại số tuyến tính có điều
khiển
Trong mục này ta sẽ đưa ra công thức nghiệm cho phương trình vi phân đại số
tuyến tính dạng
. (1.1.2.1)
Ex( t ) Ax ( t ) B ( t ) u ( t )
trong đó ma trận E nói chung suy biến ( det E có thể bằng 0).
Định nghĩa 1.2
Cặp ma trận EA, nn được gọi là chính quy nếu tồn tại một số phức
sao cho hoặc đa thức .
EA0 sE A 0
Bổ đề 1.2 (Bổ đề 1-2.2, [6], trang 7)
Cặp ma trận là chính quy nếu và chỉ nếu tồn tại hai ma trận không suy
(EA, )
biến P và sao cho
Q
In , 0 A1 , 0
QEP 1 QAP
0 I
0 N n2
nn
trong đó , 1 1 , và là hai ma trận đơn vị tương ứng
n12+= n n A
1 I n1 I n2
cấp và ; N nn22 là ma trận lũy linh.
n1 n2
Bổ đề 1.2 chỉ ra rằng với giả thiết chính quy của cặp ma trận , hệ
(EA, )
(1.1.2.1) có thể viết dưới dạng sau:
x1( t ) A 1 x 1 ( t ) (1. B1.2.2 1) ( t ) u ( t ), (1.1.2.2 a )
Nx2( t ) x 2 ( t ) B 2 ( t ) u ( t ). (1.1.2.2 b )
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
11
Thật vậy, do là cặp ma trận chính qui nên tồn tại các ma trận không suy
(EA, )
biến P và sao cho
Q
In , 0 A1 . 0
QEP 1 QAP
0 I
0 N n2
Nhân hai vế của (1.1.2.1) về bên trái với ma trận không suy biến ta được
Q
.
QEx( t ) QAx ( t ) QB ( t ) u ( t )
Đặt hay . Khi ấy và phương trình trên
x( t )= Px% ( t ) x%( t )= P- 1 x ( t ) x&( t )= Px%& ( t )
có thể viết thành
. (1.1.2.3)
QEPx( t ) QAPx ( t ) QB ( t ) u ( t )
hay
IAn 00. 1
1 x( t ) x ( t ) QB ( t ) u ( t )
0 I
0 N n2
Đặt æöx%1 và Bt ,() khi ấy phương trình trên có dạng
ç ÷ 1
x%= ç ÷ QB() t
çx%2 ÷
èø Bt2 ()
I x( t ) A x ( t ) B ( t ) u ( t );
n1 1 1 1 1
Nx( t ) I x ( t ) B ( t ) u ( t )
2n2 2 2
hay
x1( t ) A 1 x 1 ( t ) B 1 ( t ) u ( t );
Nx2( t ) x 2 ( t ) B 2 ( t ) u ( t )
nn
với nn và N 22 là ma trận lũy linh.
12
x12( t ) , x ( t )
Từ nay về sau, ta luôn giả thiết cặp ma trận là chính qui. Khi ấy để
(EA, )
nghiên cứu hệ (1.1.2.1) ta chỉ cần nghiên cứu hệ (1.1.2.2).
Hệ (1.1.2.2a) là hệ phương trình vi phân thường có điều khiển. Nó đã được
nghiên cứu kĩ trong các tài liệu về lý thuyết điều khiển. Cụ thể, với mỗi điều kiện
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
12
ban đầu 0 n và mỗi hàm đo được cho trước , , nghiệm của
1 t 0
x1 ut()
(1.1.2.2a) có dạng (xem, thí dụ, [2], [4]):
. t (1.1.2.4a)
A11 t0 A() t s
x1( t ) e x 1 e B 1 ( s ) u ( s ) ds
s 0
Theo Mệnh đề 1.2, nghiệm của hệ (1.1.2.2b) được tính theo công thức
h1 h 1 h 1
. (1.1.2.4b) (k ) s k ( s k ) ( k )
x22( t ) Fks ( t ) u ( t ) N C B ( t ) u ( t )
k00 k s k
Như vậy, nghiệm xt() của (1.1.2.2) tính được tường minh theo công
xt() 1
xt2 ()
thức (1.1.2.4a) và (1.1.2.4b). Ta nói nghiệm (1.1.2.4) tương ứng với điều khiển
đã chọn.
ut()
Chúng ta cũng lưu ý rằng, để có được công thức (1.1.2.4b), ta đã phải giả thiết
và có các thành phần là các hàm khả vi liên tục đến cấp h , mặc dù
Bt() ut()
trong định nghĩa nghiệm của (1.1.2.4a), thì chỉ cần tính chất đo được của hàm
. Đây cũng là một trong những điểm khác biệt giữa phương trình vi phân
ut()
thường và phương trình vi phân đại số.
Hệ quả 1.2
Giả sử là ma trận hằng và vectơ hàm có các thành phần là các hàm
B() tº B ut()
khả vi liên tục đến cấp h . Khi ấy nghiệm của phương trình:
Ex( t ) Ax ( t ) Bu ( t )
t
có dạng: A11 t0 A() t s
x1( t ) e x 1 e B 1 u ( s ) ds
s 0
h 1
. kk()
x2 ( t ) N Bu ( t )
k 0
Đối với hệ phương trình vi phân đại số (1.1.2.1), ta cũng có một cách tiếp cận
khác thông qua ma trận cơ sở để nghiên cứu cấu trúc của tập nghiệm. Dưới đây
chúng tôi trình bày cách tiếp cận này theo [7].
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
13
1.3 Công thức nghiệm của hệ phƣơng trình vi phân đại số với ma trận cơ sở
1.3.1 Hệ phƣơng trình vi phân đại số với ma trận cơ sở
Một cách tự nhiên, hệ phương trình vi phân đại số được hiểu là hệ
x1( t ) R 1 x 1 ( t ) R 2 x 2 ( t ) f 1 ( t ); (1.1.3.1)
0R3 x 1 ( t ) R 4 x 2 ( t ) f 2 ( t ), (1.1.3.2)
trong đó n và n ; , và (t), là các ma trận
1 2 i 1,2,3,4
xt1 () xt2 () Ri j 1,2
f j
và vectơ có số chiều tương ứng.
Hệ trên gồm một phương trình vi phân thường và một ràng buộc đại số (một
phương trình không chứa đạo hàm của các ẩn ).
xx12,
Đặt
xf, I 0 RR
x11; f ; E ; A 12
xf2200 RR34
trong đó là ma trận đơn vị cấp , là các ma trận gồm tất cả các phần tử
0
II n1
n1
bằng 0 có số chiều tương ứng; A và là ma trận và vectơ có số chiều tương ứng.
f
Dưới đây, để cho gọn, ta thường chỉ viết các ma trận đơn vị và ma trận gồm tất cả
các phần tử bằng 0 là I và 0 mà không chỉ rõ số chiều của các ma trận.
Với cách đặt trên, hệ (1.1.3.1), (1.1.3.2) có thể viết được dưới dạng:
Ex Ax f (1.1.3.3)
hay
(1.1.3.4)
Ex Ax f
Nhận xét 1.3.1
Trong các tài liệu, hệ phương trình vi phân đại số thường được đồng nhất v