Luận văn Xây dựng công thức tính lượng mưa từ số liệu ra đa đốp-Le cho khu vực trung trung bộ

Thời tiết ảnh hưởng rất lớn đến đời sống kinh tế–xã hội của loài người. Việc dựbáo các hiện tượng thời tiết ngày càng trởnên cần thiết và trởthành mối quan tâm nhiều quốc gia trên thếgiới. Dựbáo thời tiết thông qua dựbáo các yếu tố: áp suất, nhiệt độ, độ ẩm, gió, mưa. Như chúng ta đã biết, mưa lớn là nguyên nhân chính gây ra lũ ởvùng Trung Trung bộ và đã đểlại những hậu quảrất nghiêm trọng cho vùng này trong nhiều năm qua nhất là trong thời gian gần đây, vì thếdự báo định lượng mưa được quan tâm nhiều nhất. Để đo mưa định lượng (xác định cường độ mưa, tổng lượng mưa giờ, ngày ) được tiến hành với nhiều phương pháp trực tiếp hoặc gián tiếp, một trong những phương pháp đó là sửdụng ra đa khí tượng. Ra đa có nhiều ưu điểm mạnh trong đo mưa định lượng so với mạng lưới trạm đo mưa trực tiếp tại mặt đất như: đo trong phạm vi rộng, xác định được diện tích vùng mưa, đo mưa với độphân giải cao vềkhông gian và thời gian.Ra đa có thể đo mưa tại các vùng sâu, vùng xa, ngoài biển nơi xây dựng rất khó khăn hoặc không thểxây dựng được những hệthống trạm đo đạc yếu tố khí tượng bềmặt. Hơn thếnữa ra đa còn có thể xác định được cấu trúc không gian ba chiều của trường mây và mưa trong vùng hoạt động của ra đa.

pdf92 trang | Chia sẻ: oanh_nt | Lượt xem: 1973 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Xây dựng công thức tính lượng mưa từ số liệu ra đa đốp-Le cho khu vực trung trung bộ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------------- HOÀNG MINH TOÁN XÂY DỰNG CÔNG THỨC TÍNH LƯỢNG MƯA TỪ SỐ LIỆU RA ĐA ĐỐP-LE CHO KHU VỰC TRUNG TRUNG BỘ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2009 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------------- HOÀNG MINH TOÁN XÂY DỰNG CÔNG THỨC TÍNH LƯỢNG MƯA TỪ SỐ LIỆU RA ĐA ĐỐP-LE CHO KHU VỰC TRUNG TRUNG BỘ Chuyên ngành: Khí tượng và Khí hậu học Mã số: 60.44.87 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS NGUYỄN HƯỚNG ĐIỀN Hà Nội – 2009 2 Trong quá trình làm luận văn tốt nghiệp tôi được: Đài Khí tượng Cao không đã cho phép tiếp cận, tìm hiểu, triển khai và nghiên cứu trên cặp số liệu khảo sát rađa thời tiết - số liệu đo mưa tự động. TT Quốc gia Dự báo KTTV-Phòng Dự báo Hạn ngắn, Đài Khí tượng Thuỷ văn Khu vực Trung Trung Bộ, Công ty CMT Hà Nội đã tạo mọi điều kiện thuận lợi cho tôi được đến và làm việc hoàn thành kế hoạch nhanh chóng và đạt yêu cầu. Các chuyên gia Nhật Bản: GS.TS Matsumoto, GS.TS Kimpei ICHIYANAGI - Viện JAMSTEC, T.S.Hironari KANAMORI tại Đại học Tokyo, T.S Hideyuki KAMIMERA tại Viện JAMSTEC đã chuyển giao kỹ thuật, công nghệ, trang thiết bị và cùng chúng tôi xây dựng hệ thống đo mưa tự động. Bên cạnh đó còn có sự giúp đỡ của các đồng nghiệp: T.S. Trần Duy Sơn, T.S. Ngô Đức Thành, Th.S. Nguyễn Viết Thắng, Th.S. Đào Thị Loan v.v... tại Đài Khí tượng Cao không, T.S. Tạ Văn Đa tại Viện Khí tượng Thuỷ văn và Môi trường. Sự giúp đỡ nhiệt tình của các thầy cô, các bạn học viên ở Bộ môn Khí tượng- Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội. Đặc biệt là sự hướng dẫn tận tình của PGS.T.S. Nguyễn Hướng Điền và sự giúp đỡ của T.S. Nguyễn Thị Tân Thanh . Cho phép tôi bày tỏ lòng biết ơn chân thành trước những sự giúp đỡ quý báu đó. Hà Nội, tháng 5/2009. 3 MỤC LỤC MỤC LỤC .................................................................................................... 4 MỞ ĐẦU....................................................................................................... 6 CHƯƠNG 1: GIỚI THIỆU CHUNG VỀ RAĐA, RAĐA THỜI TIẾT TAM KỲ VÀ HỆ THỐNG ĐO MƯA TỰ ĐỘNG...................................... 8 1.1. GIỚI THIỆU CHUNG VỀ RAĐA........................................................ 8 1.1.1. Lịch sử của rađa ................................................................................ 8 1.1.2. Nguyên tắc hoạt động........................................................................ 8 1.1.3. Phương trình rađa đối với mục tiêu điểm trong chân không ............ 10 1.1.4. Diện tích phản xạ hiệu dụng của mục tiêu khí tượng. Thể tích phân giải của khối xung..................................................................................... 12 1.1.5.Các phương trình rađa Probert-Jones và phương trình rađa rút gọn đối với mục tiêu khí tượng.............................................................................. 15 1.2. RAĐA THỜI TIẾT TAM KỲ............................................................. 18 1.3.HỆ THỐNG ĐO MƯA TỰ ĐỘNG ..................................................... 20 CHƯƠNG 2: ƯỚC LƯỢNG MƯA TỪ ĐỘ PHẢN HỒI VÔ TUYẾN CỦA RAĐA KHÍ TƯỢNG ........................................................................ 25 2.1. KIẾN THỨC CƠ BẢN VỀ MƯA.................................................... 25 2.1.1.Mưa và một vài loại mưa thường gặp............................................... 25 2.1.2.Một số đặc trưng cơ bản................................................................... 26 2.1.3.Sự phân bố hạt mưa theo kích thước hạt........................................... 27 2.1.4.Phân cấp cường độ mưa ................................................................... 29 2.1.5.Sử dụng rađa để phát hiện mưa ........................................................ 30 2.1.6.Sử dụng rađa để ước lượng mưa....................................................... 31 2.2. CÁC NGUYÊN NHÂN GÂY RA SAI SỐ KHI ƯỚC LƯỢNG MƯA BẰNG RAĐA KHÍ TƯỢNG ..................................................................... 34 2.2.1. Sai số do hệ thống thiết bị rađa........................................................ 35 2.2.2.Sai số do địa hình............................................................................. 35 2.2.3.Các sai số do điều kiện truyền sóng dị thường trong khí quyển ........ 36 2.2.4.Các sai số do công thức tính cường độ mưa không bao hàm hết các đặc tính của vùng mưa .............................................................................. 37 2.2.5. Sai số do hệ thống thiết bị đo mưa mặt đất. ..................................... 38 4 CHƯƠNG 3. PHƯƠNG PHÁP TÍNH TOÁN VÀ ĐÁNH GIÁ SAI SỐ . 39 3.1. PHƯƠNG PHÁP BÌNH PHƯƠNG TỐI THIỂU ........................... 39 3.1.1.Đặt bài toán về cách tìm các tham số................................................ 39 3.1.2.Phương pháp bình phương tối thiểu.................................................. 40 3.2. TỔNG QUAN VỀ ĐÁNH GIÁ ........................................................... 44 3.2.1. Một số kiến thức cơ bản về đánh giá ............................................... 44 3.2.2. Một số đại lượng thống kê khách quan thường được sử dụng trong đánh giá .................................................................................................... 45 CHƯƠNG 4. CHƯƠNG TRÌNH TÍNH TOÁN, KẾT QUẢ VÀ KẾT LUẬN.......................................................................................................... 48 4.1. TIẾN HÀNH XÂY DỰNG CÔNG THỨC...................................... 48 4.1.1.Thu thập số liệu................................................................................ 48 4.1.2 Xử lí số liệu và đồng bộ số liệu theo thời gian.................................. 49 4.1.3 Tính toán và đánh giá công thức....................................................... 56 4.1.3 Giới thiệu phần mềm tính toán và kiểm nghiệm ............................... 58 4.2 KẾT LUẬN........................................................................................... 62 TÀI LIỆU THAM KHẢO.......................................................................... 63 PHỤ LỤC.................................................................................................... 65 PL1. Dạng đầu vào số liệu rađa................................................................. 65 PL2. Dạng đầu vào của đo mưa tự động mặt đất. ...................................... 66 PL3.Mã nguồn phần mềm. ........................................................................ 69 PL4.Kết quả tính toán ............................................................................... 91 5 MỞ ĐẦU Thời tiết ảnh hưởng rất lớn đến đời sống kinh tế–xã hội của loài người. Việc dự báo các hiện tượng thời tiết ngày càng trở nên cần thiết và trở thành mối quan tâm nhiều quốc gia trên thế giới. Dự báo thời tiết thông qua dự báo các yếu tố: áp suất, nhiệt độ, độ ẩm, gió, mưa... Như chúng ta đã biết, mưa lớn là nguyên nhân chính gây ra lũ ở vùng Trung Trung bộ và đã để lại những hậu quả rất nghiêm trọng cho vùng này trong nhiều năm qua nhất là trong thời gian gần đây, vì thế dự báo định lượng mưa được quan tâm nhiều nhất. Để đo mưa định lượng (xác định cường độ mưa, tổng lượng mưa giờ, ngày…) được tiến hành với nhiều phương pháp trực tiếp hoặc gián tiếp, một trong những phương pháp đó là sử dụng ra đa khí tượng. Ra đa có nhiều ưu điểm mạnh trong đo mưa định lượng so với mạng lưới trạm đo mưa trực tiếp tại mặt đất như: đo trong phạm vi rộng, xác định được diện tích vùng mưa, đo mưa với độ phân giải cao về không gian và thời gian. Ra đa có thể đo mưa tại các vùng sâu, vùng xa, ngoài biển nơi xây dựng rất khó khăn hoặc không thể xây dựng được những hệ thống trạm đo đạc yếu tố khí tượng bề mặt. Hơn thế nữa ra đa còn có thể xác định được cấu trúc không gian ba chiều của trường mây và mưa trong vùng hoạt động của ra đa. Tuy nhiên, thực tế biến động của trường mưa rất phức tạp, nhất là tính biến động ngẫu nhiên của chúng theo quy mô thời gian và không gian, thể hiện qua cường độ, phạm vi. Bên cạch đó hệ thống các trạm đo mưa trên lãnh thổ Việt Nam vẫn còn khá thưa thớt, một số vùng quan trọng mạng trạm đo mưa không đủ dày, độ chính xác ước lượng mưa bằng ra đa phụ thuộc rất nhiều vào các tham số như: độ rộng, mức độ bị che khuất của cánh sóng ăng ten, Một điểm nữa là các công thức tính lượng mưa khu vực Trung trung Bộ chưa có hoặc mới ở giai đoạn áp dụng thử nghiệm vài hệ số thực nghiệm của 6 nước ngoài, vì thế ảnh hưởng rất lớn tới các phương pháp dự báo thời tiết, cảnh báo hệ quả của hiện tượng thời tiết nguy hiểm. Xuất phát từ nhu cầu có được số liệu tốt phục vụ mục đích dự báo, điều tra, nghiên cứu nên việc sử dụng những tính năng ưu việt của ra đa thời tiết kết hợp với hệ thống đo mưa tự động để đo mưa mà đặc biệt là mưa diện rộng chính là mực tiêu của luận văn này. 7 CHƯƠNG 1: GIỚI THIỆU CHUNG VỀ RAĐA, RAĐA THỜI TIẾT TAM KỲ VÀ HỆ THỐNG ĐO MƯA TỰ ĐỘNG 1.1. GIỚI THIỆU CHUNG VỀ RAĐA 1.1.1. Lịch sử của rađa Rađa là sản phẩm của sự phát triển kỹ thuật vô tuyến và điện tử học hiện đại, nó được đưa vào sử dụng từ trước chiến tranh thế giới lần thứ II ở các nước có nền khoa học tiên tiến. Rađa được sử dụng cho mục đích quân sự, dùng để phát hiện máy bay khi chúng vẫn nằm ngoài vùng nhìn thấy được, rồi hiển thị lên màn hình rađa. Công cụ này ngày càng được sử dụng rộng rãi để phục vụ cho mục đích quân sự. Ngày nay, khi công nghệ khoa học kỹ thuật phát triển, rađa có tác dụng lớn trong quốc phòng, kinh tế quốc dân và cả trong nghiên cứu khoa học. Nhờ những ưu điểm nổi bật mà rađa được sử dụng rộng rãi trong ngành khí tượng nhằm phát hiện, theo dõi, nghiên cứu mục tiêu, trong đó có các mục tiêu khí tượng. 1.1.2. Nguyên tắc hoạt động RADAR (RAdio Detection And Ranging) là một phương tiện kỹ thuật dùng để phát hiện và xác định vị trí của mục tiêu ở xa bằng sóng vô tuyến điện. Có một điều thú vị là bản thân từ RADAR trong tiếng anh có thể đánh vần ngược từ cuối lên đầu mà vẫn giữ nguyên các âm tiết như khi đọc xuôi, như thể nó mang hàm ý rằng sóng của rađa phát đi vào không gian và lại quay ngược trở lại rađa. Máy phát của rađa tạo ra một sóng điện từ mạnh truyền vào khí quyển thông qua anten. Trong quá trình truyền sóng trong khí quyển, sóng điện từ 8 gặp các mục tiêu, bị các mục tiêu tán xạ và hấp thụ. Mục tiêu tán xạ sóng điện từ theo mọi hướng trong đó một phần năng lượng sẽ quay trở lại anten. Hình 1.1. Anten rađa truyền Hình 1.2. Xung phản hồi lại rađa sóng vào khí quyển Anten nhận tán xạ sóng điện từ trở lại, tập hợp chúng và khuyếch đại chúng lên nhờ bộ phận khuyếch đại điện từ. Tuy vậy, tín hiệu trở về có mức năng lượng nhỏ hơn rất nhiều so với tín hiệu truyền đi. Mục tiêu càng tán xạ mạnh thì công suất tín hiệu nhận về càng cao. Sóng điện từ mà anten truyền ra có 3 thuộc tính cơ bản sau: - Tần số lặp (pulse repetition frequency) - Thời gian phát xung (transmission time) - Độ rộng cánh sóng (beam width). Tần số lặp là số lần xung phát trong một giây, nó tuỳ thuộc từng loại rađa. Thời gian phát xung (còn gọi là độ rộng xung) là khoảng thời gian mà rađa phát ra một xung. Khi một chùm tia di chuyển với tốc độ ánh sáng thì độ dài của một xung (pulse length) có thể được tính một cách dễ dàng qua thời gian phát xung. Độ rộng cánh sóng được xác định bởi độ rộng của góc hợp bởi hai tia có độ chói bức xạ bằng một nửa độ chói cực đại và ở những rađa 9 thời tiết hiện đại nó có độ lớn khoảng 10. Dựa vào độ rộng cánh sóng, độ dài của một xung và khoảng cách từ rađa tới xung ta có thể tính được thể tích xung phát (pulse volume). Hình 1.3. Hình ảnh mô tả sóng điện từ mà rađa truyền ra 1.1.3. Phương trình rađa đối với mục tiêu điểm trong chân không Khi lan truyền trong môi trường vật chất bất kì, sóng điện từ ít nhiều đều bị suy yếu dọc đường do bị hấp thụ và khuếch tán bởi các phần tử của môi trường. Trong chân không, sóng điện từ không bị suy yếu bởi các hiện tượng này mà chỉ bị suy yếu nếu năng lượng sóng phải phân bố trong một vùng không gian ngày càng rộng lớn hơn. Tuy nhiên, khí quyển sạch, không chứa các hạt aerosol (xon khí) chỉ hấp thụ và khuếch tán rất ít sóng vô tuyến điện từ mà các rađa thường sử dụng, do vậy có thể xem nó như một môi trường không gây ra sự suy yếu sóng. Trong mục này ta xét một mục tiêu điểm nằm trong môi trường như vậy hoặc trong chân không. Nếu anten phát sóng với công suất xung Pt và hệ số khuếch đại của anten là G thì tại mục tiêu ở khoảng cách r sẽ có mật độ dòng năng lượng sóng điện từ Im là: 10 PG I  t (1.1) m 4r 2 Như vậy, nếu mục tiêu có diện tích phản xạ hiệu dụng là m thì dòng (thông lượng) năng lượng do mục tiêu tán xạ ra mọi hướng sẽ là: P G P  I   t  (1.2) m m m 4r 2 m Mật độ dòng năng lượng thu được tại anten rađa Ia là: P P G 1 P G I  m  t   t  (1.3) a 4r 2 4r 2 m 4r 2 16 2 r 4 m Từ đây dễ dàng nhận thấy khi anten có diện tích phản xạ hiệu dụng Ae, dòng năng lượng điện từ tại anten thu (tức công suất thu) của rađa sẽ là: PGA P  I A  t e  (1.4) r a e 16 2r 4 m Giữa hệ số khuếch đại G và diện tích phản xạ hiệu dụng Ae của anten lại có mối quan hệ sau: G2 A  (1.5) e 4 Thay (1.5) vào (1.4) ta được công suất thu: P G 2 2 P  t  (1.6) r 64 3r 4 m Hệ thức (1.6) là phương trình rađa cho một mục tiêu điểm trong chân không (hoặc trong môi trường không gây ra sự suy yếu sóng của rađa). 11 1.1.4. Diện tích phản xạ hiệu dụng của mục tiêu khí tượng. Thể tích phân giải của khối xung Độ lớn của năng lượng phản xạ được đánh giá bởi thông số m , gọi là diện tích phản xạ hiệu dụng của mục tiêu. Diện tích phản xạ hiệu dụng của mục tiêu khí tượng m phụ thuộc không những vào kích thước, trạng thái, nhiệt độ và sự phân bố của các hạt mà còn vào tần số sóng (hoặc bước sóng). Việc tính toán m bằng giải tích là phức tạp, vì như trên đã nói, bản thân mục tiêu khí tượng rất phức tạp. Để đơn giản, người ta tính toán m của mục tiêu khí tượng với các giả thiết sau: - Coi như các hạt đều có hình cầu, bán kính a của hạt nhỏ hơn rất nhiều so với bước sóng  (a  /32 = 0,03); khi đó diện tích phản xạ hiệu dụng của một hạt thứ i nào đó được tính bằng hệ thức thu được từ lí thuyết tán xạ của Rayleigh: 5 64 2   a 6 K (1.7) i 4 i i 2 2 2 m 1 K i trong đó, i  2 phụ thuộc vào trạng thái pha, nhiệt độ của hạt mi  2 và bước sóng (ở đây mi là chỉ số khúc xạ phức của hạt thứ i) . Sự phụ thuộc 2 2 của K i vào bước sóng và nhiệt độ không lớn lắm. K i phụ thuộc chủ yếu 2 vào trạng thái pha của hạt. Đối với hạt nước, Ki có giá trị bằng 0,93  0,004, 2 trong khi đó đối với hạt băng Ki có giá trị bằng cỡ 0,197 tức là nhỏ hơn khoảng 5 lần. - Sự phân bố các hạt không ảnh hưởng lẫn nhau, nghĩa là khoảng cách giữa các hạt đủ lớn để trường điện từ của các hạt không tác dụng qua lại, lúc đó diện tích phản xạ hiệu dụng của mục tiêu khí tượng trong một đơn vị thể 12 tích là tổng các diện tích phản xạ hiệu dụng của tất cả các hạt trong đơn vị thể tích đó. Diện tích phản xạ hiệu dụng  của một đơn vị thể tích của mục tiêu khí tượng là: N 5 N 64π 2     K a 6  i 4  i i (1.8) i1 λ i1 trong đó N là số hạt trong một đơn vị thể tích.  còn gọi là hệ số tán xạ, có đơn vị là m-1. - Tín hiệu phản xạ thu được tại đầu vào của máy thu rađa tại một thời điểm là tín hiệu phản xạ từ tập hợp tất cả các hạt nằm trong một phần Vu của thể tích khối xung, cùng về tới máy thu cùng vào thời điểm đó. Vu được gọi là thể tích phân giải của khối xung. Diện tích phản xạ hiệu dụng của mục tiêu khí tượng m khi đó sẽ là: N  m  Vu .  Vu  i (1.9) i1 Một cách gần đúng, có thể chứng minh được rằng Vu bằng nửa thể tích khối xung. Thật vậy, khi một khối xung nằm trọn trong một mục tiêu khí tượng (hình 1.14), các hạt mây hoặc mưa trong khối xung sẽ bị sóng chiếu vào và cùng tạo ra các sóng phản hồi. Tuy nhiên, các sóng phản hồi này lại không về tới rađa cùng một lúc vì khoảng cách từ nơi phản hồi tới rađa không bằng nhau. Chẳng hạn, do khoảng cách giữa mặt sóng đầu và cuối là h (chiều dài không gian của khối xung) nên các sóng từ những hạt ở mặt sóng cuối của khối xung sẽ về đích trước các sóng từ những hạt ở mặt sóng đầu một khoảng h thời gian bằng  (   ). Do thời gian phân giải của radar bằng /2 (tức là các c tín hiệu thu ở những thời điểm quá gần nhau, cách nhau ít hơn /2 thì rađa không phân biệt được), như vậy công suất thu ở một thời điểm t thực chất là 13 công suất trung bình trong cả một khoảng thời gian bằng /2 (từ t   / 4 đến t   / 4 ) do đóng góp của tất cả các hạt nằm trong một nón cụt có chiều dài bằng h/2 (h là chiều dài không gian của một xung) dọc theo búp sóng ở lân cận khoảng cách r (từ r  h / 4 đến r  h / 4 ), mặt bên là mặt bên của búp sóng. Thể tích của nón cụt này xấp xỉ bằng nửa thể tích của khối xung, theo định nghĩa, chính là thể tích phân giải của khối xung và có thể tính được như sau: h V  R 2 (1.10) u 2 trong đó R là bán kính mặt cắt ngang của khối xung. Giữa R, độ rộng cánh sóng  (tính bằng rađian) và khoảng cách từ rađa đến mục tiêu r có mối liên hệ:  R  r (1.11) 2 Do vậy: 2  r  h r 2 2h Vu      (1.12)  2  2 8 Hình 1.4. Để tính nửa thể tích xung phát Tuy nhiên, muốn tính chính xác hơn thể tích phân giải của khối xung, Probert và Jones đã tính đến sự khác biệt giữa vai trò của các hạt nằm dọc theo trục của búp sóng với những hạt nằm xa trục đó vì rõ ràng là công suất 14 sóng chiếu tới chúng khác nhau. Với giả thiết “công suất” sóng phát mạnh nhất theo hướng trục búp sóng (Pmax) và giảm dần ra xung quanh (tới P1/2 ở rìa búp sóng) theo qui luật phân bố chuẩn, Probert và Jones đã tìm được công thức tính thể tích phân giải "hiệu dụng" của khối xung: .r 2 2h V  (1.13) u 16ln 2 Dưới đây ta sẽ dùng Vu tính theo công thức này (nếu búp sóng có dạng elip thì 2 trong công thức trên phải thay bằng tích ). Đưa các hệ thức của  và Vu từ (1.8) và (1.13) vào (1.9) ta có thể tính được diện tích phản xạ hiệu dụng của mục tiêu khí tượng: 2 2 5 N 6 2 2 N π.r .θ h 64π 2 6 8π r θ h 2 6  m  . 4  Ki ai  4  Ki ai (1.14) 8 λ i1 λ i1 1.1.5.Các phương trình rađa Probert-Jones và phương trình rađa rút gọn đối với mục tiêu khí tượng Thay m từ hệ thức trên vào hệ thức (1.6), bỏ qua sự suy yếu dọc đường truyền của sóng rađa, ta có phương trình rađa đối với mục tiêu khí tượng như sau: 2 2 6 2 2 N 3 2 2 N P G λ 64π θ h r 2 π P G θ cτ 2 P  t K a 6  t K D 6 r 3 4 4  i i 2 2  i i (1.15) 64π r 16ln 2 λ i1 1024λ r ln 2 i1 Nếu tính đến sự suy yếu năng lượng dọc đường truyền trong khí quyển thực và dọc đường truyền từ anten đến máy thu, ta phải nhân vế phải của phương trình với một hệ số L (L<1) đặc trưng cho phần (tỉ lệ) năng lượng về tới máy thu: 3 2 2 N π P G θ cτ 2 P  t L K D 6 r 2 2  i i (1.16) 1024λ r ln 2 i1 15 Phương trình (1.16) được gọi là phương trình rađa Probert-Jones đối với mục tiêu khí tượng trong môi trường khí quyển thực. Giá trị N 2 6 Z   Ki Di (1.17) i1 được gọi là độ phản hồi vô tuyến (PHVT) của mục tiêu khí tượng . Đại lượng này có thứ nguyên là m3 trong hệ SI, còn trong Khí tượng rađa nó có thứ nguyên là mm6/m3. L trong phương trình Probert-Jones được gọi là độ truyền qua, nó có thể được viết lại thành: L  La Lrd (1.18) với La là độ truyền qua trong khí quyển, còn Lrd là độ truyền qua các đường dẫn sóng bên trong rađa. Nghịch đảo của các đại lượng này gọi là độ hao tổn (loss factor): 1 M  - độ hao tổn toàn phần (1.19) L 1 M a  - độ hao tổn trong khí quyển (1.20) La 1 M rd  - độ hao tổn qua các đư
Luận văn liên quan