Ngày nay không ai có thể phủ nhận được tầm quan trọng của công nghệ sinh học đối với nền kinh tế quốc dân nước ta nói riêng và thế giới nói chung. Thế kỷ 21 được coi là thế kỷ của ngành công nghệ sinh học, được coi là thời điểm lịch sử mà con tầu vũ trụ mang tên “ công nghệ sinh học” đã rời khỏi bệ phóng để bay đến tầm cao mới.Việt Nam là nước nhiệt đới có khí hậu nóng ẩm, rất thuận lợi cho sự phát triển của thực vật và đây được coi là một kho tàng vô giá về nguồn hợp chất tự nhiên và nguồn nguyên liệu để phát triển ngành công nghệ sinh học nước nhà.
Trong những năm gần đây, công nghệ tách chiết các hợp chất từ thực vật đã không ngừng phát triển và và bước đầu đạt được những thành quả đáng kể. Trên thế giới từ rất lâu người ta đã ứng dụng những công nghệ này để sản xuất các chất có hoạt tính sinh học, phục vụ cho nghiên cứu, sản xuất và phục vụ lợi ích của con người. Những nghiên cứu về hợp chất có hoạt tính sinh học ở thực vật phát triển từ những năm 1950. Có khoảng hơn 30.000 hợp chất được chiết xuất từ thực vật có hoạt tính và rất có giá trị đối với cuộc sống. Những hợp chất này như các alkaloid, terpenoid, phenolic được biết đến như là các hợp chất thứ cấp. Các hợp chất này thường chỉ được tạo ra ở một số loại tế bào nhất định như các tế bào rễ tơ, biểu mô, hoa, lá
Mặc dù, hóa học tổng hợp hữu cơ đạt nhiều thành tựu quan trọng nhưng nhiều hợp chất có hoạt tính sinh học (thường gọi là các chất thứ cấp) vẫn còn khó tổng hợp hoặc có thể tổng hợp được nhưng chi phí rất đắt. Chẳng hạn, một số hỗn hợp phức tạp như tinh dầu hoa hồng là không thể tổng hợp hóa học được.
43 trang |
Chia sẻ: ngtr9097 | Lượt xem: 7927 | Lượt tải: 4
Bạn đang xem trước 20 trang tài liệu Nghiên cứu alkaloid & quy trình tách chiết một số chất có bản chất là alkaloid, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỞ ĐẦU
Ngày nay không ai có thể phủ nhận được tầm quan trọng của công nghệ sinh học đối với nền kinh tế quốc dân nước ta nói riêng và thế giới nói chung. Thế kỷ 21 được coi là thế kỷ của ngành công nghệ sinh học, được coi là thời điểm lịch sử mà con tầu vũ trụ mang tên “ công nghệ sinh học” đã rời khỏi bệ phóng để bay đến tầm cao mới.Việt Nam là nước nhiệt đới có khí hậu nóng ẩm, rất thuận lợi cho sự phát triển của thực vật và đây được coi là một kho tàng vô giá về nguồn hợp chất tự nhiên và nguồn nguyên liệu để phát triển ngành công nghệ sinh học nước nhà.
Trong những năm gần đây, công nghệ tách chiết các hợp chất từ thực vật đã không ngừng phát triển và và bước đầu đạt được những thành quả đáng kể. Trên thế giới từ rất lâu người ta đã ứng dụng những công nghệ này để sản xuất các chất có hoạt tính sinh học, phục vụ cho nghiên cứu, sản xuất và phục vụ lợi ích của con người. Những nghiên cứu về hợp chất có hoạt tính sinh học ở thực vật phát triển từ những năm 1950. Có khoảng hơn 30.000 hợp chất được chiết xuất từ thực vật có hoạt tính và rất có giá trị đối với cuộc sống. Những hợp chất này như các alkaloid, terpenoid, phenolic… được biết đến như là các hợp chất thứ cấp. Các hợp chất này thường chỉ được tạo ra ở một số loại tế bào nhất định như các tế bào rễ tơ, biểu mô, hoa, lá…
Mặc dù, hóa học tổng hợp hữu cơ đạt nhiều thành tựu quan trọng nhưng nhiều hợp chất có hoạt tính sinh học (thường gọi là các chất thứ cấp) vẫn còn khó tổng hợp hoặc có thể tổng hợp được nhưng chi phí rất đắt. Chẳng hạn, một số hỗn hợp phức tạp như tinh dầu hoa hồng là không thể tổng hợp hóa học được.
Ngày nay, những hợp chất tự nhiên có hoạt tính sinh học được phân lập từ cây cỏ đã được ứng dụng trong rất nhiều ngành công nghiệp, nông nghiệp và chăm sóc sức khoẻ con người. Chúng được dùng để sản xuất thuốc chữa bệnh, thuốc bảo vệ thực vật, làm nguyên liệu cho ngành công nghiệp thực phẩm và mỹ phẩm v.v... Mặc dù công nghệ tổng hợp hoá dược ngày nay đã phát triển mạnh mẽ, tạo ra các biệt dược khác nhau sử dụng trong công tác phòng, chữa bệnh, nhờ đó giảm tỷ lệ tử vong rất nhiều song những đóng góp của các thảo dược cũng không vì thế mà mất đi chỗ đứng trong Y học. Nó vẫn tiếp tục được dùng như là nguồn nguyên liệu trực tiếp, gián tiếp hoặc cung cấp những chất đầu cho công nghệ bán tổng hợp nhằm tìm kiếm những dược phẩm mới cho việc điều trị các bệnh thông thường cũng như các bệnh nan y.
Xuất phát từ thực tế trên, tôi đã tiến hành tìm hiểu đề tài: Nghiên cứu alkaloid & quy trình tách chiết một số chất có bản chất là alkaloid.
Mục tiêu của đề tài:
Tìm hiểu về alkaloid, cấu tạo hóa học và phân loại của alkaloid, các phương pháp chiết xuất các alcaloid.
Đưa ra một số quy trình tách chiết hoạt chất có bản chất là alcaloid.
CHƯƠNG I. TỔNG QUAN VỀ HỢP CHẤT THỨ CẤP & ALKALOID
I. Hợp chất thứ cấp trong thực vật.
Thực vật là nguồn cung cấp các hợp chất dùng làm dược liệu hoặc phụ gia thực phẩm có giá trị. Những sản phẩm này được biết như là các chất trao đổi thứ cấp, thường được hình thành với một lượng rất nhỏ trong cây và chức năng trao đổi chất chưa được biết đầy đủ. Chúng dường như là sản phẩm của các phản ứng hóa học của thực vật với môi trường hoặc là sự bảo vệ hóa học chống lại vi sinh vật và động vật.
Những nghiên cứu về các hợp chất thứ cấp có nguồn gốc thực vật đã phát triển từ cuối những năm 50 của thế kỷ 20 (Rao và cs 2002). Các chất trao đổi thứ cấp có thể xếp trong ba nhóm chính là alkaloid, tinh dầu và glycoside [3].
1.1 Những nghiên cứu về hợp chất thứ cấp trên thế giới.
Ngay từ năm 1971, Wani và các cộng sự đã tìm ra một diterpene amide mới có khả năng chống ung thư gọi là “taxol” chiết từ cây thông đỏ Pacific (Taxus brevifolia) [38]. Đến năm 1983, taxol được Cục quản lý Dược phẩm và Thực phẩm Hoa Kỳ (FDA) đồng ý đưa vào thử nghiệm ở giai đoạn I điều trị cho ung thư buồng trứng. Sau đó, FDA đã cho phép sử dụng taxol trong điều trị các trường hợp ung thư buồng trứng và ung thư vú. Ngoài ra, taxol cũng có tác dụng đối với các bệnh nhân có khối u ác tính, ung thư phổi và các dạng u bướu khác và nó được xem như là chất đầu tiên của một nhóm mới trong hóa trị liệu ung thư [11]. Tuy nhiên, sử dụng taxol trong điều trị bị hạn chế do chỉ tách chiết được một lượng rất ít từ vỏ của cây thông đỏ tự nhiên. Lớp vỏ mỏng này chứa khoảng 0,001% taxol tính theo khối lượng khô. Ở cây 100 năm tuổi trung bình chỉ thu được 3 kg vỏ (khoảng 300 mg taxol), lượng này ứng với một liều trong toàn đợt điều trị ung thư. Sở dĩ nguồn taxol khan hiếm như vậy là do các cây tự nhiên sinh trưởng rất chậm [11]. Do đó, cần có những nguồn khác để thay thế mới đáp ứng được nhu cầu sử dụng ngày càng tăng trong y học.
Nuôi cấy tế bào các loài Taxus được xem như là một phương pháp ưu thế để cung cấp ổn định nguồn taxol và dẫn xuất taxane của [32]. Hiện nay, việc sản xuất taxol bằng nuôi cấy tế bào các loài Taxus đã trở thành một trong những ứng dụng rộng rãi của nuôi cấy tế bào thực vật và đang tạo ra các giá trị thương mại to lớn. Fett-Neto và cộng sự (1994) đã nghiên cứu ảnh hưởng của các chất dinh dưỡng và một số yếu tố khác lên sự tích lũy taxol trong nuôi cấy tế bào T. Cuspidata [14]. Srinivasan và cộng sự (1995) nghiên cứu quá trình sản xuất taxol bằng nuôi cấy tế bào của T. Baccata [34]. Lee và cộng sự (1995) đã nghiên cứu sản xuất taxol bằng nuôi cấy tế bào huyền phù của cây T. mairei, một loài được tìm thấy tại Đài Loan ở độ cao 2000 m so với mực nước biển. Các dòng tế bào thu được từ callus có nguồn gốc thân và lá, và một trong những dòng này sau khi được bổ sung các tiền chất vào môi trường nuôi cấy, thì sau 6 tuần cứ một lít dịch huyền phù tế bào sẽ có khoảng 200 mg taxol [21].
Tsay và cộng sự (1994) đã nghiên cứu sản xuất imperatorin từ nuôi cấy tế bào huyền phù của cây Angelica dahurica var. Formosana. Đây là một loài cây bản địa lâu năm ở Đài Loan, được sử dụng để chữa chứng đau đầu và bệnh vảy nến. Imperatorin được xem là thành phần hoạt động chính trong điều trị các bệnh về da. Nếu sản xuất cây Angelica dahurica var. formosana bằng phương pháp nhân giống truyền thống sẽ mất một thời gian dài mới có thể đáp ứng được nhu cầu. Vì vậy, phương pháp nuôi cấy tế bào huyền phù sản xuất imperatorin đã được chọn lựa sử dụng. Nghiên cứu đã cho thấy trong chu kỳ sinh trưởng của tế bào huyền phù, sản phẩm imperatorin đạt giá trị cực đại trong khoảng giữa 10 và 14 ngày. Benzylamino purine ở nồng độ từ 0,5-1,0 mg/L đã kích thích tổng hợp imperatorin, một tỷ lệ thích hợp ammonium nitrate và nitrate (2:1) cũng như tăng nồng độ phosphate từ 1-2 mM sẽ làm tăng lượng impertatorin. Glucose là nguồn carbon tốt hơn saccharose và fructose về hiệu quả sản xuất imperatorin. Vai trò của elicitor cũng đã được khảo sát, bổ sung thêm vanadyl sulphate trong môi trường sẽ tăng tích lũy imperatorin, quyết định nồng độ và thời gian sinh trưởng của tế bào. Bổ sung vanadyl sulphate ở nồng độ 30 mg/L vào môi trường đã cho hiệu quả tốt nhất sau 10 ngày nuôi cấy. Hoặc bổ sung 20 g/L chất hấp phụ amberlite XAD-7 vào môi trường, quá trình tổng hợp imperatorin cũng tăng mạnh ở ngày nuôi cấy thứ 10. Hàm lượng imperatorin sản xuất bởi phương thức này đạt 460 μg khối lượng tươi cao hơn đối chứng 140 lần [37].
Berberine là một isoquinoline alkaloid có trong hệ rễ của cây Coptis japonica và vỏ của cây Phellondendron amurense. Berberine chloride được sử dụng để chữa bệnh rối loạn tiêu hóa. Để thu được nguyên liệu thô từ rễ cây Coptis phải mất 5-6 năm. Yamada và Sato (1981) đã chọn dòng tế bào có khả năng có khả năng sản xuất berberine cao của loài C. japonica [42]. Sau đó, công ty hóa dầu Mitsui (Nhật Bản) đã cải thiện được năng suất bằng cách thêm 10-8 M gibberellic acid vào môi trường, hiệu suất berberine đã tăng lên rất nhiều tới 1,66 g/L [24].
Merkli và cộng sự (1997) đã nuôi cấy rễ tơ của cây Trigonella foenum-graecum bằng cách gây nhiễm chủng A4 của Agrobacterium rhizogenes. Các rễ tơ này đã sản xuất diosgenin, một spirostanol quan trọng cho sự bán tổng hợp (semi-synthesis) của các hormone steroid. Hàm lượng diosgenin thu được cao nhất là 0,040 % khối lượng khô gần gấp 2 lần so với các rễ không biến nạp chủng A4 8 tháng tuổi (0,024 %). Các tác giả này đã nghiên cứu ảnh hưởng của cholesterol, pH môi trường và chitosan đến khả năng sản xuất diosgenin. Kết quả cho thấy bổ sung 40 mg/L chitosan vào môi trường nuôi cấy sẽ tăng hàm lượng diosgenin lên gấp 3 lần so với đối chứng [23].
Yeh và cộng sự (1994) nghiên cứu sản xuất diosgenin bằng nuôi cấy tế bào huyền phù của cây Dioscorea doryophora. Phương pháp này được sử dụng như một cách thay thế quá trình tổng hợp steroid. Nuôi cấy tế bào huyền phù được thiết lập bằng cách đưa callus vào môi trường có 0,2 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D). Nồng độ saccharose tối thích cho tổng hợp diosgenin là 3%. Lượng diosgenin thu được trong trường hợp này đạt tới 3,2% khốilượng khô. Sản xuất diosgenin từ cây D. doryophora bằng nuôi cấy tế bào huyền phù hiện nay đã được ứng dụng trên quy mô công nghiệp [44].
Gentiana davidii var. formosana là thảo mộc bản địa sống lâu năm ở Đài Loan. Từ xưa nó đã được sử dụng như một loại thuốc thô sơ trong y học cổ truyền Trung Quốc nhằm ngăn chặn béo phì và lão hóa, bảo vệ phổi khỏi các chất độc [45]. Secoiridoid glycoside là hợp chất chính với đặc tính y học ở trong rễ của chi Gentiana [29]. Chueh và cộng sự (2000) nghiên cứu tối ưu hóa điều kiện nuôi cấy tế bào huyền phù của G. davidii var. formosa để sản xuất gentipicroside và swertiamarin, hai dược chất quan trọng. Tế bào huyền phù sinh trưởng tối ưu khi nuôi cấy callus trong môi trường bổ sung 1,2 mg/L kinetin và 3% saccharose, pH 4,2-5,2, tốc độ lắc 80-100 vòng/phút. Sự tích lũy cao nhất 2 hợp chất swertiamarin và gentipicroside trong tế bào được xác định lần lượt sau 12 và 24 ngày nuôi cấy [10].
Miyasaka và cộng sự (1989) đã nghiên cứu sản xuất cryptotanshinone từ nuôi cấy callus cây Salvia miltiorrhiza. Salvia là một chi quan trọng của họ Lamiaceae và một vài loài của Salvia mọc hoang dại trên khắp thế giới dùng làm thuốc dân gian. Hiệu quả của BA đối với việc hình thành cryptotanshinone trong nuôi cấy callus S.miltiorrhiza đã được khảo sát. Callus sơ cấp được tạo ra từ nuôi cấy mảnh lá ở trong tối trên môi trường bổ sung 1,0 mg/L 2,4-D. Callus sau đó phát triển nhanh hơn trên môi trường có 1,0 mg/L 2,4-D và 0,5 mg/L BA. Kết quả phân tích HPLC cho thấy callus chứa một lượng nhỏ cryptotanshinone (0,26 mg/g khối lượng khô). Loại bỏ 2,4-D khỏi môi trường nuôi cấy cho kết quả là lượng cryptotanshinone trong callus tăng lên. Nồng độ cao nhất của cryptotanshione thu được trong callus nuôi cấy trên môi trường có 0,2 mg/L BA trong 6 ngày là 4,59 mg/g khối lượng khô [25], [41].
Shikonin, một loại sắc tố đỏ có khả năng diệt khuẩn, có trong rễ cây Lithospermum erythrorhizon. Tuy nhiên, người ta đã tạo được dòng tế bào rễ cây Lithospermum có khả năng tích lũy đến 15% shikonin và đã hoàn chỉnh công nghệ nuôi cấy tế bào sản xuất shikonin. Công nghệ này cho phép trong một chu kỳ nuôi cấy thu hoạch tới 5 kg hoạt chất và giúp giảm nhiều giá thành của shikonin.
Podophyllotoxin là một aryltetralin lignan chống khối u được tìm thấy ở các cây Podophyllum peltatum và Podophyllum hexandrum. Nó cũng được dùng để tổng hợp các dẫn xuất etoposide và teniposide, sử dụng rộng rãi trong điều trị chống khối u [17]. Tuy nhiên, trong tự nhiên những cây này sinh trưởng rất chậm và vì thế đã hạn chế việc cung cấp podophyllotoxin, bắt buộc chúng ta phải hướng tới một phương thức thay thế khác. Nuôi cấy tế bào để sản xuất podophyllotoxin đã được Kadkade và cs thực hiện lần đầu tiên vào năm 1981 và 1982 [19], [20]. Woerdenberg và cộng sự (1990) đã dùng một phức hợp precursor là coniferyl alcohol và b-cyclodextrin bổ sung trong môi trường nuôi cấy tế bào huyền phù của P. hexandrum. Bổ sung phức hợp 3 mM coniferyl alcohol đã tăng hiệu suất podophyllotoxin lên 0.013% theo khối lương khô, trong khi các nuôi cấy không có precursor chỉ sản xuất được 0.0035% podophyllotoxin [40]. Smollny và cộng sự (1992) đã thông báo callus và tế bào huyền phù của Lilium album đã sản xuất được 0.3% podophyllotoxin [33].
Việc sản xuất các hợp chất thứ cấp đã tạo ra một bước tiến xa trong khoa học thực vật. Việc phát triển và sử dụng các công cụ di truyền cũng như sự hiểu biết ngày càng sâu sắc hơn về bản chất của tế bào và các phương thức điều hòa quá trình chuyển hóa trao đổi chất thứ cấp là cơ sở cho việc sản xuất chúng ở quy mô thương mại [3].
Do nhu cầu sử dụng các sản phẩm tự nhiên trong y-dược ngày càng tăng nhưng sản lượng của chúng ở cây trồng tự nhiên lại rất thấp đã thúc đẩy sự phát triển không ngừng của công nghệ tách chiết các hợp chất thứ sinh. [3].
1.2 Vài nét về tình hình nghiên cứu hợp chất thứ cấp ở Việt Nam.
Ở Việt Nam, công nghệ tách chiết các hợp chất thứu cấp chủ yếu gắn liền với công nghệ nuôi cấy tế bào và chúng phát triển vào những năm 1970. Từ đó đến nay đã đạt được nhiều thành công, đáng kể nhất chính là quy trình sản xuất sâm Ngọc Linh do Học viện Quân y khai thác. Chỉ với một vài tế bào từ rễ củ sâm Ngọc Linh, bằng kỹ thuật nuôi cấy tế bào, các nhà khoa học của Học viện Quân y đã có thể sản xuất sâm Ngọc Linh với số lượng lớn trong vòng 10-20 ngày. Cụ thể là đã hoàn chỉnh quy trình nuôi cấy tế bào, xây dựng được quy trình định tính và định lượng các thành phần ginsenosid trong sinh khối sâm Ngọc Linh bằng sắc kí lỏng hiệu năng cao (HPLC), so sánh với sâm Ngọc Linh tự nhiên và chất chuẩn; đánh giá tính an toàn và tác dụng dược lý của sâm Ngọc Linh, bào chế thành công được một số chế phẩm từ hoạt chất chiết xuất từ sâm Ngọc Linh sinh khối như nước uống tăng lực và viên nang mềm. Các công nghệ này đang được Công ty Nước khoáng Tiền Hải (Thái Bình) đề xuất chuyển giao để sản xuất nước tăng lực. Phương pháp sản xuất sinh khối tế bào rễ sâm Ngọc Linh được cấp bằng độc quyền sáng chế số 7523 vào ngày 11/02/2009 tại Việt Nam [6].
Việt Nam cũng đang triển khai các dự án nuôi cấy và chiết xuất taxol từ cây thông đỏ ở Lâm Đồng. Ngoài ra còn có “Nghiên cứu sản xuất arteminisin dùng kỹ thuật nuôi cấy tế bào từ cây thanh hao hoa vàng” của Viện Sinh học Nhiệt đới trong nghị định thư hợp tác với Malaysia (2007-2010) hay đại học Huế “Nghiên cứu khả năng tích lũy glycoalkaloid ở callus cây cà gai leo Solanum hainanense”. Tuy nhiên, những dự án nói trên vẫn còn ở quy mô phòng thí nghiệm. Phát triển các kỹ thuật nuôi cấy trong các bioreactor ở quy mô công nghiệp để sản xuất các hợp chất có hoạt tính sinh học vẫn còn là một con đường đầy tiềm năng chưa được khai phá hết của nền công nghệ tách chiết các hợp chất thứu sinh từ thực vật ở Việt Nam [6].
II. Alkaloid.
2.1 Lịch sử phát hiện.
Năm 1804- 1805, pháp và Đức đã phân lập được morphin và điều chế được dạng muối của nó. Đồng thời đã chứng minh được morphin là hoạt chất chính của cây thuốc phiện có tác dụng sinh lý rõ rệt.
Năm 1980, từ vỏ cây canhkina, đã chiết và kết tinh được một chất đặt tên là “cinchonino” sau đó hai nhà hóa học pháp đã xác định cinchonino là hỗn hợp của hai alcaloid là quinin và cinchonin.
Năm 1918, phát hiện ra alcaloid của hạt mã tiền là strycnin và bruxin.
Năm 1918 phát hiện ra được cafein trong chè, cà phê rồi sau đó là nicotin trong thuốc lá, atropin trong cà độc dược, theobromin trong cacao, codein trong thuốc phiện, cocain trong lá coca.
Giữa năm 1973, người ta đã xác định được 4959 Alcaloid khác nhau trong đó có 3293 chất đã xác định được công thức hóa học. Hiện nay đã phát hiện ra được rất nhiều số lượng Alcaloid và cũng đã đưa vào ứng dụng trong y học ngày một tăng [5].
2.2 Khái quát về Alkaloid [1][5][26].
2.2.1 Khái niệm.
Alkaloid có nguồn gốc từ chữ: alcali tiếng Ả rập là kiềm. Alkaloid là:
- Những hợp chất hữu cơ có chứa dị vòng nitơ, có tính bazơ thường gặp ở trong nhiều loài thực vật và đôi khi còn tìm thấy trong một vài loài động vật.
- Có phản ứng kiềm cho các muối với acid và các muối này dễ kết tinh.
- Có hoạt tính sinh học rất quan trọng.
- Có một số phản ứng chung là tạo “tủa“ cần thiết cho sự xác định chúng.
Chúng là một nhóm hợp chất thiên nhiên quan trọng về nhiều mặt. Đặc biệt trong lĩnh vực y học, chúng cung cấp nhiều loại thuốc có giá trị chữa bệnh cao và độc đáo.
2.2.2 Cấu tạo hóa học.
Về mặt hóa học, sự phong phú và đa dạng của alkaloid đã trở thành một chuyên nghành, chiếm một vị trí quan trọng trong lĩnh vực nghiên cứu và trong tạp chí thông tin về hóa học. Đối với việc nghiên cứu alkaloid còn quan trọng hơn bởi vì chúng có hệ thực vật nhiệt đới phong phú là nguồn cung cấp alkaloid chủ yếu.
Về mặt cấu trúc hóa học, chúng có ít nhất 1 nguyên tử N trong phân tử, chủ yếu nằm trong vòng. Có ý kiến xếp các hợp chất có N ngoài vòng như Colchicin, Hordenin, là các protoalkaloid. Sự có mặt của nguyên tử của N trong cấu trúc quyết định tính bazơ của alkaloid và là chỗ dựa rất quan trọng cho các nhà hóa học trong nghiên cứu alkaloid.
2.2.3 Phân loại.
Đã biết có đến trên 250 dạng cấu trúc khác nhau với hơn 5.500 hợp chất alkaloid trong tự nhiên. Vì vậy cách phân loại dựa vào cấu trúc nhân cơ bản trước đây (khoảng 20 nhóm cấu trúc) xét ra chưa đáp ứng nên ngày càng có xu hướng chia chúng thành những nhóm nhỏ: nhóm alkaloid Ecgotamia, Harmin, Yohimbin, Strychnin, Echitamin. Nhóm alkaloid có nhân isoquinolin được chia thành các nhóm: Benzyliaoquinolin, Apocphin, Protobecberin, Benzophenanthridin…
Bảng 1:Một số dạng cấu trúc nhóm Alkaloid
Tên cấu trúc
Công thức
Hợp chất thí dụ
Apocphin
Stephanin, Apomocphin
Erythrinan
Erythratin
Pyrolidin
Nicotin, Stachydrin, Hygrin
Indol
Reserpin, Strychnin, Echitamin
Mocphinan
Mocphin, Codein
Purin
Cafein, Theophylin
Pyridin
Rixinin
Pyroligidin
Heliotridin
Quinolin
Dictamnin
Steroit
Solasodin, Tomatidin
Tropan
Hyosxinamin,Cocain
2.2.4. Phân bố alkaloid.
Cromwell (1995) ước tính Alkaloid phân bố trong khoảng 1 phần 7 loài thực vật có hoa. Một ước tính khác (Hegnauer, 1963) cho rằng Alkaloid có từ 12%-20% trong tổng số cây có nhựa. Còn Willaman và Schubert (1955) thì cho rằng trong hơn 300 họ của nghành hạt kín thì 1/3 họ có chứa Alkaloid. Nhiều tổng kết cho thấy đại đa số cây có chứa Alkaloid là cây hai lá mầm. Chí có một số ít cây chứa Alkaloid là cây 1 lá mầm và nghành hạt trần. Theo thống kê đến nay thì cây thuộc thảo và cây bụi có nhiều Alkaloid hơn cây gỗ, và trọng lương phân tử của Alkaloid trong cây gỗ thường bé hơn trọng lượng phân tử cây thuộc thảo. Cây một năm có nhiều Alkaloid hơn cây lưu niên (Levin, 1976). Alkaloid không có trong loài sống ở nước ngoại trừ họ sen (Nympheaceae) (Mc.Nair.1943).
Thực ra rất nhiều loài có Alkaloid nhưng chỉ ở mức độ dạng vết hoặc ở tỷ lệ phần vạn, mười vạn. Để giới hạn với ý nghĩa thực tiễn, một cây được xem là có Alkaloid phải chứa ít nhất là 0.05% Alkaloid so với dược liệu khô.
Mối liên quan giữa Alkaloid với các chất khác trong 1 cây cũng đã được nghiên cứu. Cây có chứa Alkaloid đều vắng mặt tinh dầu và ngược lại (Trelibs,1955) . Hiện tượng này đưa đến ý kiến cho rằng chức năng của 2 nhóm hợp chất này đối với cây cỏ là giống nhau.
Một vài nhận xét khác là sự có mặt của axit amin thông thường và 1 vài loại axit amin đặc biệt (tiền chất của Alkaloid) trong các loài với nồng độ song song với nồng độ Alkaloid (Michels – Nyomorkay, 1970; Paris và Girre, 1969). Điều này khẳng định thêm quá trình tổng hợp Alkaloid trong cây bắt nguồn từ các axit amin.
2.2.5. Sinh tổng hợp Alkaloid.
Có rất nhiều sách và tổng quan đề cập đến vấn đề sinh tổng hợp Alkaloid trong cây ( Mothes và Schute, 1969; Robinson, 1968; Spenser, 1970).
Nói chung cho đến nay người ta thừa nhận rằng đại đa số Alkaloid là dẫn xuất của Axit amin. Mối quan hệ giữa Alkaloid và các axit amin đã được biết đến từ đầu thế kỷ 20 và đã có nhiều nghiên cứu tổng hợp Alkaloid từ axit amin.
Có thể nói giai đoạn quan trọng đầu tiên trong sự chuyển hóa axit amin thành Alkaloid là sự khử Cacboxyl thành một amin và tiếp đến là sự oxy hóa amin này thành andehyt bởi men oxydaza amin. Việc ngưng tụ một nhóm amin bởi Andehyt dẫn đến tạo các vòng đặc trưng cho Alk