Vật liệu áp điện là vật liệu có thể tạo ra được một điện thế tương ứng với
sự biến đổi ứng suất cơ học. Mặc dù được phát hiện ra từ năm 1880 nhưng
mãi đến những năm 1950 vật liệu này mới được ứng dụng rộng rãi. Trong
suốt nửa thập kỷ vừa qua, vật liệu gốm PZT (PbZr1-xTixO3) được các nhà
khoa học nghiên cứu và chứng minh được rằng nó có hệ số áp điện tương
đối lớn (d33 = 220 ÷ 590 pC/N). Cũng chính vì thế mà hầu hết những ứng
dụng áp điện, từ pin điện thoại đến kính hiển vi điện tử xuyên ngầm công
nghệ cao(high-tech scanning-tunneling microscope), đều sử dụng vật liệu
áp điện PZT.Tuy nhiên, Pb là một nguyên tố phóng xạ gây nguy hiểm cho
con người đồng thời là một trong những nguyên nhân gây ô nhiễm môi
trường toàn cầu nếu sử dụng nhiều. Do đó, yêu cầu cấp thiết cần đặt đối
với các nhà khoa học đó là cần nghiên cứu để tìm ra vật liệu áp điện không
chứa chì có hệ số áp điện cao để đưa vào ứng dụng thay cho vật liệu PZT
truyền thống. Gần đây một vài vật liệu áp điện không chứa chì đã được
công bố và cho được kết quả khá khả quan. Đặc biệt là hệ vật liệu không
chứa chì trên nền (K,Na)NbO3 và BaTiO3.
Tuy nhiên, trong sự hiểu biết của chúng tôi thì hệ vật liệu áp điện không
chứa chì vẫn chưa được nghiên cứu một cách thỏa đáng.Đã có một số công
trình công bố trên các tạp chí quốc tế nhưng còn khá ít và rời rạc.Cơ chế
vật lý để giải thích nguyên nhân gây ra hệ số áp điện lớn và các tính chất
của vật liệu vẫn còn khá nhiều bất cập, cần tập trung nghiên cứu nhiều hơn,
sâu hơn.
Ở trong nước, hệ vật liệu áp điện cũng đang được rất nhiều nhà khoa
học thuộc các trung tâm, các viện khoa học và các trường đại học như
trường Đại học Bách Khoa, Đại học Khoa học-Đại học Huế. Nhằm thúc
đẩy các hoạt động nghiên cứu về họ vật liệu áp điện không chứa chì và dựa
trên tình hình thực tại cũng như các điều kiện nghiên cứu như thiết bị thí
nghiệm, tài liệu tham khảo, khả năng cộng tác nghiên cứu với các nhóm
nghiên cứu trong nước. chúng tôi cho rằng việc nghiên cứu và giải quyết
các vấn đề nêu trên là hữu ích và sẽ cho nhiều kết quả khả quan. Đặc biệt
là tìm ra mối liên hệ giữa hệ số áp điện lớn và thời gian hồi phục điện môi
của vật liệu áp điện. Do đó, chúng tôi đề xuất đề tài “Chế tạo vật liệu sắt
điện không chứa chì nền BaTiO3 và nghiên cứu tính chất điện môi, áp điện
của chúng”. Chúng tôi hoàn toàn tin tưởng sẽ thực hiện thành công đề tài
nghiên cứu và sẽ có những đóng góp hữu ích cho sự hiểu biết về cơ chế
tương tác điện trong hệ vật liệu sắt điện, áp điện không chứa chì, cũng như
mở ra khả năng ứng dụng của hệ vật liệu này trong chế tạo pin, senso
góp phần giảm ô nhiễm môi trường.
Các nội dung chính của luận án được trình bày trong 4 chương:
Chương 1. Tổng quan lý thuyếtChương 2. Thực nghiệm
Chương 3. Ảnh hưởng của Ca thay thế Ba lên cấu trúc và tính chất
điện của BCT và BZT-BCT
Chương 4. Mối liên hệ giữa thời gian hồi phục điện môi và tính chất
áp điện của BCT và BZT-BCT
27 trang |
Chia sẻ: thientruc20 | Lượt xem: 636 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Tóm tắt Luận án Chế tạo vật liệu sắt điện không chứa chì nền Batio3 và nghiên cứu tính chất điện môi, áp điện của chúng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ
CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
..*****.
NGUYỄN VĂN KHIỂN
CHẾ TẠO VẬT LIỆU SẮT ĐIỆN KHÔNG CHỨA CHÌ NỀN
BaTiO3 VÀ NGHIÊN CỨU TÍNH CHẤT ĐIỆN MÔI, ÁP ĐIỆN
CỦA CHÚNG
Chuyên ngành: Vật liệu điện tử
Mãsố: 62.44.01.23
TÓM TẮT LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU
HÀ NỘI, NĂM 2018
Công trình được hoàn thành tại:
VIỆN KHOA HỌC VẬT LIỆU - VIỆN HÀN LÂM KHOA HỌC VÀ
CÔNG NGHỆ VIỆT NAM
Người hướng dẫn khoa học:
1. PGS.TS Lê Văn Hồng
2. TS. Nguyễn Văn Đăng
Phản biện 1:
Phản biện 2:
Phản biện 3:
Luận án sẽ được bảo vệ trước hội đồng chấm luận án cấp học viện tại: Học
viện vào hồi.. giờ.. ngày .. tháng .. năm 2018
Có thể tìm hiểu luận án tại:
- Thư viện Quốc gia
- Thư viện Học viện khoa học và công nghệ
DANH MỤC CÔNG TRÌNH ĐÃ CÔNG BỐ
Các bài báo trong danh mục ISI
1. Le Van Hong, Nguyen Van Khien and Truong Van Chuong,
“Dielectric Relaxation of Ba1¹xCaxTiO3 (x = 0.00.3)”, Materials
Transactions, Vol. 56, No. 9 (2015) pp. 1374 to 1377.
2. Van Khien Nguyen, Thi Hong Phong Le, Thi Kim Chi Tran, Van
Chuong Truong and Van Hong Le, “Influence of Ca Substitution
on Piezoelectric Properties of Ba1xCaxTiO3” Journal of electronic
materials, DOI: 10.1007/s11664-017-5332-0 (2017).
3. Nguyen Van Khien, Than Trong Huy, Le VanHong, “AC
conduction of Ba1-xCaxTiO3 and BZT-BCTx”, Physica B,
S0921-4526(17)30193-X (2017).
Các bài báo đăng trong tạp chí trong nước
4. Nguyễn Văn Khiển, Vũ Đình Lãm và Lê Văn Hồng, “Ba1-
xCaxTiO3 và tính chất điện môi của chúng”, Tạp chí Khoa học và
Công nghệ 52(3C) (2014) 725-730
5. Nguyen Van Khien, Vu Dinh Lam and Le Van Hong, “Ba1-
xCaxTiO3 AND THE DIELECTRIC PROPERTIES”,
Communications in Physics, Vol. 24, No. 2 (2014), pp. 170-176.
6. Nguyễn Văn Khiển, Trương Văn Chương, Đặng Anh Tuấn, và Lê
Văn Hồng, “Ảnh hưởng sự thay thế Ca cho Ba lên tính sắt điện
của hệ Ba1-xCaxTiO3”, Hội nghị Vật lý chất rắn và Khoa học vật
liệu toàn quốc lần thứ 9 - SPMS2015
7. Nguyen Van Khien and Le Van Hong, “ Effect of Ca concentration
substituting for Ba on structure and ferroelectric properties of BZT-
BCT material”, Vietnam Journal of Science and Technology 56 (1A)
(2018) 86-92
Các công trình liên quan.
8. T. D. Thanh, P. T. Phong, D. H. Mạnh, N. V. Khien, L. V. Hong,
T. L. Phan, S. C. Yu, Low-field magnetoresistance in
La0.7Sr0.3MnO3/BaTiO3 composites, J mater SCI (2013) 24: 1389-
1394.
9. Nguyễn Văn Khiển, Trịnh Phi Hiệp, Nguyễn Thị Dung và Nguyễn
Văn Đăng, Nghiên cứu ảnh hưởng của biên pha nano BaTiO3 lên
tính chất điện từ của vật liệu La0.7Sr0.3MnO3, Tạp chí Khoa học và
Công nghệ Đại học Thái Nguyên, tập 118 số 4, 2014, trang 197-
202
MỞ ĐẦU
Vật liệu áp điện là vật liệu có thể tạo ra được một điện thế tương ứng với
sự biến đổi ứng suất cơ học. Mặc dù được phát hiện ra từ năm 1880 nhưng
mãi đến những năm 1950 vật liệu này mới được ứng dụng rộng rãi. Trong
suốt nửa thập kỷ vừa qua, vật liệu gốm PZT (PbZr1-xTixO3) được các nhà
khoa học nghiên cứu và chứng minh được rằng nó có hệ số áp điện tương
đối lớn (d33 = 220 ÷ 590 pC/N). Cũng chính vì thế mà hầu hết những ứng
dụng áp điện, từ pin điện thoại đến kính hiển vi điện tử xuyên ngầm công
nghệ cao(high-tech scanning-tunneling microscope), đều sử dụng vật liệu
áp điện PZT.Tuy nhiên, Pb là một nguyên tố phóng xạ gây nguy hiểm cho
con người đồng thời là một trong những nguyên nhân gây ô nhiễm môi
trường toàn cầu nếu sử dụng nhiều. Do đó, yêu cầu cấp thiết cần đặt đối
với các nhà khoa học đó là cần nghiên cứu để tìm ra vật liệu áp điện không
chứa chì có hệ số áp điện cao để đưa vào ứng dụng thay cho vật liệu PZT
truyền thống. Gần đây một vài vật liệu áp điện không chứa chì đã được
công bố và cho được kết quả khá khả quan. Đặc biệt là hệ vật liệu không
chứa chì trên nền (K,Na)NbO3 và BaTiO3.
Tuy nhiên, trong sự hiểu biết của chúng tôi thì hệ vật liệu áp điện không
chứa chì vẫn chưa được nghiên cứu một cách thỏa đáng.Đã có một số công
trình công bố trên các tạp chí quốc tế nhưng còn khá ít và rời rạc.Cơ chế
vật lý để giải thích nguyên nhân gây ra hệ số áp điện lớn và các tính chất
của vật liệu vẫn còn khá nhiều bất cập, cần tập trung nghiên cứu nhiều hơn,
sâu hơn.
Ở trong nước, hệ vật liệu áp điện cũng đang được rất nhiều nhà khoa
học thuộc các trung tâm, các viện khoa học và các trường đại học như
trường Đại học Bách Khoa, Đại học Khoa học-Đại học Huế.... Nhằm thúc
đẩy các hoạt động nghiên cứu về họ vật liệu áp điện không chứa chì và dựa
trên tình hình thực tại cũng như các điều kiện nghiên cứu như thiết bị thí
nghiệm, tài liệu tham khảo, khả năng cộng tác nghiên cứu với các nhóm
nghiên cứu trong nước... chúng tôi cho rằng việc nghiên cứu và giải quyết
các vấn đề nêu trên là hữu ích và sẽ cho nhiều kết quả khả quan. Đặc biệt
là tìm ra mối liên hệ giữa hệ số áp điện lớn và thời gian hồi phục điện môi
của vật liệu áp điện. Do đó, chúng tôi đề xuất đề tài “Chế tạo vật liệu sắt
điện không chứa chì nền BaTiO3 và nghiên cứu tính chất điện môi, áp điện
của chúng”. Chúng tôi hoàn toàn tin tưởng sẽ thực hiện thành công đề tài
nghiên cứu và sẽ có những đóng góp hữu ích cho sự hiểu biết về cơ chế
tương tác điện trong hệ vật liệu sắt điện, áp điện không chứa chì, cũng như
mở ra khả năng ứng dụng của hệ vật liệu này trong chế tạo pin, senso
góp phần giảm ô nhiễm môi trường.
Các nội dung chính của luận án được trình bày trong 4 chương:
Chương 1. Tổng quan lý thuyết
Chương 2. Thực nghiệm
Chương 3. Ảnh hưởng của Ca thay thế Ba lên cấu trúc và tính chất
điện của BCT và BZT-BCT
Chương 4. Mối liên hệ giữa thời gian hồi phục điện môi và tính chất
áp điện của BCT và BZT-BCT
Mục tiêu của luận án là:
Chế tạo thành công các mẫu vật liệu gốm áp điện (Ba1-xCax)TiO3
(BCT) và BZT-BCT bằng phương pháp tổng hợp pha rắn. Vật liệu
BZT-BCT phải đạt chất lượng tốt, có hệ số áp điện lớn (khoảng 500-
600 pC/N).
Nghiên cứu mối liên quan giữa cạnh tranh pha hình thái với tính chất
điện môi sắt điện, đặc biệt với tính chất áp điện lớn của vật liệu.
Ngoài ra trên cơ sở kết quả của các nghiên cứu đồng bộ về cấu trúc
pha vật liệu, phân cực điện của vật liệu phụ thuộc nhiệt độ, điện
trường và tần số, sẽ đưa ra những phân tích, bàn luận tổng quát góp
phần làm sáng tỏ cơ chế vật lý của hiện tượng hệ số áp điện lớn trong
các hệ vật liệu sắt điện.
Đối tượng nghiên cứu của luận án
Đối tượng nghiên cứu: Vật liệu áp điện.
Phạm vi nghiên cứu: Vật liệu áp điện không chứa chì nền BaTiO3
Phương pháp nghiên cứu: Mẫu gốm khối được chế tạo bằng phương
pháp phản ứng pha rắn. Cấu trúc vật liệu, pha hình thái, kích thước
hạt, dạng thù hình vật liệu được khảo sát và phân tích đánh giá trên
cơ sở phân tích phổ nhiễu xạ tia X, phổ tán xạ Raman và ảnh kính
hiển vi điện tử SEM. Sau khi có các thông tin cần thiết về cấu trúc
pha, độ sạch pha vật liệu, hình thái học và những thông tin bổ trợ
như nêu ở trên chúng tôi thực hiện các phép đo điện như đo đường
điện trở R(T), điện dung C(T), lúp điện trễ D(E). Phép đo C(T) sẽ
được thực hiện dưới tác dụng của điện trường cao nhằm đánh giá độ
phân cực cực đại của vật liệu. Ngoài ra phép đo phụ thuộc tần số C(f)
của độ phân cực cũng được thực hiện nhằm đánh giá đặc trưng hồi
phục điện môi và gián tiếp đánh giá hệ số áp điện của vật liệu. Tổng
hợp tất cả các kết quả nghiên cứu sẽ giúp chúng ta đánh giá cơ chế
phân cực điện môi trong vật liệu, mối tương quan giữa tính cạnh
tranh pha hình thái học và tính chất áp điện sắt điện của vật liệu.
Trong quá trình làm và viết luận án, mặc dù tác giả đã rất cố gắng
nhưng vẫn không thể tránh được những sai sót. Tác giả rất mong nhận
được những ý kiến đóng góp, phản biện của các nhà khoa học cũng như
những người quan tâm đến đề tài để tác giả có thể hoàn thành luận án một
cách tốt nhất.
Chương 1. Tổng quan.
Chương 2. Thực nghiệm.
Chương 3. Ảnh hưởng của thay thế Ca cho Ba lên cấu trúc và tính
chất điện của BCY và BZT-BCT
BZT-BCT là vật liệu có tính chất áp điện gần như là lớn nhất trong
các công bố về hệ vật liệ áp điện không chứa chì. Trước khi phân tích và
tìm hiểu nguyên nhân gây ra hiệu ứng áp điện lớn trong hệ BZT- BCT
chúng tôi đi nghiên cứu hệ thành phần BCT trước (đối với hệ BZT đã có
nhiều công bố của các tác giả trên thế giới). Cấu trúc và tính chất vật lý của
hệ BCT sẽ biến đổi như thế nào khi một phần Ba được thay thế bởi Ca.
Liệu biên pha hình thái có tồn tại trong vật liệu BCT không và khi thay Ca
cho Ba tính chất áp điện của vật liệu có được cải thiện hay không? Những
câu hỏi này sẽ lần lượt được giải thích trong hai chương kết quả của luận
án
3.1. Ảnh hưởng của thay thế Ca cho Ba lên cấu trúc của hệ BCT và
BZT-BCT
Để tiện theo dõi trong quá trình phân tích mẫu chúng tôi ký hiệu mẫu
Ba1-xCaxTiO3 là BCTx ( x = 0, 10, 12, 14, 16, 18, 20 và 30: phần trăm
nguyên tử của nồng độ Ca) và hệ Ba(Ti0.8Zr0.2)O3 – Ba1-yCayTiO3 là BZT-
BCTy (y = 15, 20, 25, 28, 28.8, 29.2, 29.6, 30, 30.4 và 35, nồng độ phần
trăm nguyên tử Ca trong hệ vật liệu này bằng y/2).
Hình 3.1. Giản đồ nhiễu xạ tia X của các mẫu BCTx
Hình 3.1 là giản đồ nhiễu xạ tia X của các mẫu. Ta thấy, các đỉnh nhiễu
xạ sắc nét, chứng tỏ độ kết tinh tốt. Cường độ đỉnh nhiễu xạ ứng với góc
2θ = 31,50 đạt giá trị lớn nhất. Khi Ca chưa thay thế cho Ba thì vật liệu có
cấu trúc lập phương, khi Ba thay thế một phần bởi Ca thì cấu trúc dần
chuyển sang pha tứ giác. Các mẫu có nồng độ pha tạp Ca thấp hơn 14,8%
20 30 40 50 60 70 80 90
2 (
o
)
BCT0
BCT10
BCT12
BCT14
BCT14.4
BCT14.6
BCT14.8
BCT15
BCT15.2
BCT16
BCT20
BCT30
82 84 86
BCT12
BCT14
BCT14.4
BCT14.6
BCT14.8
BCT15
BCT15.2
BCT16
(0
0
1
)
(0
1
0
)
(0
1
1
)
(1
1
1
)
* (
0
0
2
)
(0
2
0
)
(0
1
2
)
(0
2
1
) (
1
1
2
) (1
2
1
)
(0
2
2
)
(2
2
0
)
(1
1
2
)
(0
1
3
)
(0
3
1
)
(1
1
3
) (3
1
1
)
(2
2
2
)
(x = 0,148) là đơn pha, không có thành phần pha lạ xuất hiện. Khi nồng độ
Ca pha tạp cao hơn 15% (x ≥ 0,15), trên phổ nhiễu xạ của các mẫu xuất
hiện đỉnh nhiễu xạ mới được đánh dấu * trong giản đồ. Các đỉnh nhiễu xạ
này là của thành phần CaTiO3 hình thành khi nồng độ Ca vượt quá 14,8% .
Giản đồ nhiễu xạ tia X của các mẫu cho thấy các đỉnh nhiễu xạ có xu
hướng dịch về góc 2 lớn khi nồng độ Ca tăng. Điều nàycó thể liên quan
tới bán kính ion Ca2+ nhỏ hơn bán kính của ion Ba2+ (Bán kính của ion Ca2+
và Ba
2+
lần lượt là 1,34 nm và 1,61 nm). Chúng tôi cho rằng sự khác biệt
giữa bán kính ion Ca2+ và Ba2+ gây ra biến dạng mạng tinh thể khi Ca thay
thế cho Ba trong BTO. Để nghiên cứu sâu hơn ảnh hưởng của cấu trúc
BTO khi thay thế Ca cho Ba, chúng tôi đã đi tính hằng số mạng của các
mẫu chế tạo được. Hằng số mạng được tính dựa vào các công thức sau:
Hệ lập phương :
2
222
2
1
a
lkh
d
(3.2)
Hệ tứ giác :
2
2
2
22
2
1
c
l
a
kh
d
(3.3)
Bảng 3.1. Hằng số mạng của các mẫu BCT.
Mẫu a b C α β γ c/a V
BCT0 3,9866 3,9866 3,9866 90 90 90 1 63,36
BCT10 3,9877 3,9877 4,0178 90 90 90 1,00754 63,89
BCT12 3,9905 3,9905 4,0223 90 90 90 1,00796 64,05
BCT14 3,9910 3,9910 4,0239 90 90 90 1,00824 64,09
BCT14.4 3,9914 3,9914 4,0244 90 90 90 1,00826 64,11
BCT14.6 3,9917 3,9917 4,0248 90 90 90 1,00829 64,12
BCT14.8 3,9919 3,9919 4,0252 90 90 90 1,00834 64,14
BCT15 3,9915 3,9915 4,0248 99 90 90 1,00834 64,12
BCT15.2 3,9897 3,9897 4,0232 99 90 90 1,00839 64,04
BCT16 3,9869 3,9869 4,0226 90 90 90 1,00859 63,91
BCT18 3,9860 3,9860 4,0212 90 90 90 1,00883 63,79
BCT20 3,9852 3,9852 4,0211 90 90 90 1,00901 63,66
BCT30 3,9651 3,9651 4,0021 90 90 90 1,00932 62,92
Dựa vào bảng số liệu ta thấy, đối với vật liệu gốc BTO có cấu trúc lập
phương. Khi Ba được thay thế một phần bởi Ca thì cấu trúc của nó dần
chuyển sang cấu trúc tứ giác. Hệ cấu trúc tứ giác cũng được xác định lại từ
hình ảnh HRTEM cho mẫu BCT14 như được chỉ ra trong hình 3.2a. Hình
3.2a cho thấy các mặt phẳng mạng song song với cấu trúc tứ giác có tỉ số
c/a gần như đồng nhất (cấu trúc giả lập phương). Kết quả này phù hợp với
kết quả phân tích XRD. Một điều đặc biệt chúng ta có thể nhận thấy tỷ số
c/a gần như đồng nhất và tăng rất nhẹ cùng với sự tăng của nồng độ Ca
nhưng hằng số mạng a lại chỉ tăng tới một giá trị tới hạn của nồng độ Ca
sau đó lại giảm dù Ca vẫn tiếp tục tăng và nó đạt giá trị cực đại ứng với
nồng độ Ca bằng 14,8%. Tương ứng với giá trị cực đại của a ta có giá trị
cực đại của thể tích V. Ta có thể giải thích sự tăng của thể tích ô cơ sở như
sau: Khi thay thế Ca cho Ba sẽ xảy ra hai trường hợp: hoặc là nguyên tố Ca
nằm ở đúng vị trí tâm của nguyên tố Ba; hoặc là Ca sẽ lệch khỏi tâm của vị
trí Ba ban đầu. Nếu trường hợp đầu xảy ra thì thể tích ô đơn vị sẽ giảm và
làm thu nhỏ các bát diện oxy khi nồng độ thay thế Ca tăng do bán kính ion
Ca
2+
nhỏ hơn bán kính ion Ba2+ nhưng theo phân tích và tính toán ở trên thì
phải xảy ra ở trường hợp thứ hai.
Quan sát trên giản đồ nhiễu xạ tia x ta thấy nồng độ Ca thay thế cho
Ba làm dịch chuyển các đỉnh nhiễu xạ về phía góc 2θ lớn. Tại nhiệt độ
phòng, tinh thể BTO có cấu trúc tứ giác và ứng với (222) có một đỉnh
nhiễu xạ duy nhất. Trong trường hợp của chúng tôi, hình dạng của đỉnh
(222) ứng với mẫu x = 0.14 đã bắt đầu bị chia tách thành hai đỉnh. Sự tách
đỉnh nhiễu xạ này có thể do trong vật liệu đồng tồn tại hai loại cấu trúc mà
hai loại cấu trúc này là tứ giác và mặt thoi vì theo Karaki nguyên nhân là
do ảnh hưởng của hiệu ứng kích thước hạt trong vùng 0.1 µm - 1µm.
Karaki và các cộng sự cũng đã quan sát thấy sự chuyển pha cấu trúc mặt
thoi – tứ giác ở nhiệt độ khoảng 240C của vật liệu BTO với kích thước hạt
micromet. Sự đồng tồn tại hai cấu trúc của vật liệu ở mẫu gốm với nồng độ
Ca bằng 14,8 % nguyên tử có thể là bằng chứng về sự tồn tại biên pha hình
thái ở xung quanh thành phần vật liệu gốm này, liên quan tới sự gia tăng
đáng kể của hệ số áp điện sẽ trình bày trong chương sau. Sử dụng chương
trình thương mại Rietceld X’Pert HighScore Plus chúng tôi làm khớp dữ
liệu XRD và ước tính thành phần pha tứ giác và mặt thoi cho các mẫu. Kết
quả làm khớp cho thấy sự đồng tồn tại pha tứ giác và mặt thoi và tỉ số pha
tứ giác so với pha mặt thoi là 93/7 đối với mẫu BCT14. Khi nồng độ x tăng
đến 14%, sự chia tách đỉnh tại (222) bắt đầu tăng và nó tách thành ba đỉnh
nhỏ ứng với mẫu 14.8%. Trường hợp pha tạp cao hơn 14.8% đỉnh (222)
mở rộng dần và thành một đỉnh rộng khi nồng độ pha tạp lên đến 16%.
Kết quả này có thể do sự chồng phủ của các đỉnh (222) của các cấu trúc
của BaTiO3 và CaTiO3 do chúng đồng tồn tại trong vật liệu mà ta quan sát
thầy trong giản đồ XRD của chúng. Giống như sự đồng tồn tại cũng có thể
quan sát thấy trong ảnh HRTEM với các mặt phẳng mạng song song cho
mẫu BCT16 (hình 3.2b). Sử dụng khai triển chuỗi Fourier nhanh cho các
mẫu trong vùng này xuất hiện ba đỉnh nhiễu xạ sắp xếp theo một đường
thẳng. Điều này chứng minh rằng, trong vật liệu này, tồn tại một vùng mà
ở đó các cấu trúc tinh thể của vật liệu lồng vào nhau kiểu của một siêu
mạng. Hình 3.2c hình ảnh vùng nhiễu xạ đã chọn cho thấy sự lặp đi lặp lại
của các điểm nhiễu xạ của mặt (220) của cấu trúc tứ giác với hằng số mạng
a = 0.39975nm và c = 0.0094nm. Các điểm nhiễu xạ xuất hiện dường như
được lặp lại theo một chu kỳ giống như đối với một siêu mạng. Sự tách
biệt giữa các mặt phẳng mạng được ước tính trực tiếp từ ảnh HRTEM vào
khoảng 0.26nm đến 0.27nm, kết quả này phù hợp khá tốt với sự phân tích
từ giản đồ nhiễu xạ tia x.
Hình 3.2. Ảnh HRTEM
Hình 3.3. Giản đồ nhiễu xạ tia x của hệ mẫu BZT-BCT. Từ giản đồ
nhiễu xạ tia X của hệ mẫu cho thấy: Khi nồng độ Ca nhỏ hơn 14,8 %
nguyên tử (tỷ lệ Ba: Ca là 85.2: 14.8 ứng với giá trị y = 29,6) các mẫu là
đơn pha. Khi nồng độ y lớn hơn 30 thì trên giản đồ nhiễu xạ xuất hiện đỉnh
phổ mới của thành phần CaTiO3 (kết quả này khá phù hợp với hệ vật liệu
BCTx).
Hình 3.3. Giản đồ nhiễu xạ tia X của hệ mẫu BZT-BCT
Các đỉnh nhiễu xạ có xu hướng dịch về phía 2θ lớn khi nồng độ Ca tăng
và một số vạch nhiễu xạ có xu hướng tách đỉnh. Đặc biệt ta thấy ứng với
đỉnh nhiễu xạ tại góc 2θ = 44,70 nó tách đỉnh dần khi nồng độ Ca tăng và
khi nồng độ 14,8 % nguyên tử (y = 29,6) thì nó đã tách ra thành 3 đỉnh rõ
20 30 40 50 60 70 80 90 100
BZT-BCT15
BZT-BCT20
BZT-BCT25
BZT-BCT28
BZT-BCT28.8
BZT-BCT29.6
BZT-BCT30
BZT-BCT30.4
BZT-BCT29.2
BZT-BCT35
2
o
)
(1
0
0
)
(1
1
0
)
(1
1
1
)
(0
0
2
) (2
0
0
)
(2
1
0
)
(2
1
1
)
(2
1
2
)
(2
2
0
)
(2
2
1
)
(3
1
0
)
(3
1
1
)
(3
2
2
)
44.4 45.6
rệt (các đỉnh này có thể ứng với hai loại cấu trúc khác nhau đó là tứ giác và
mặt thoi). Khi nồng độ y lớn hơn 30 thì nó lại có xu hướng chập lại thành 2
đỉnh ứng với cấu trúc tứ giác. Sự đặc biệt trong cấu trúc này có thể là
nguyên nhân dẫn đến hệ số áp điện lớn nhất đạt được tại y = 29,6 mà sẽ
được khảo sát chi tiết ở phần sau.
Khi thành phần y vẫn còn nhỏ (nhỏ hơn 29.2) vật liệu có cấu trúc mặt
thoi đặc trưng cấu trúc của BZT. Khi thành phần y cao hơn thì vật liệu có
cấu trúc tứ giác đặc trưng cấu trúc của BCT. Ứng với thành phần y = 29.6
đồng tồn tại hai loại cấu trúc tứ giác và mặt thoi. Nhận định này được
khẳng định thông qua sự tách đỉnh các vạch nhiễu xạ đặc biệt ứng với đỉnh
tại góc 2θ= 44,70 và sự làm khớp hàm Gauss ứng với các thành phần xung
quanh giá trị y = 29.6.
Hình 3.4. Giản đồ XRD trong vùng 44o-46o của các mẫu
được làm khớp với hàm Gauss
Từ kết quả khớp hình 3.4 cho thấy, với thành phần vật liệu y = 29.6
đồng tồn tại hai pha cấu trúc tứ giác (ứng với các đỉnh T(002) , T(200) tương
ứng với góc 45,11o và 45,36o) và pha mặt thoi (ứng với đỉnh R(200) tại
o45,21 ). Theo W. Wersing, W. Heywang và các cộng sự, tỷ lệ thành phần
pha tứ giác được xác định bởi biểu thức:
(3.4)
Trong đó: 200
TI ,
002
TI ,
200
RI là cường độ của các vạch nhiễu xạ tại (200),
(002) ứng với cấu trúc tứ giác và mặt thoi tương ứng. Trong trường hợp hệ
vật liệu BZT-BCT ứng với thành phần y = 29.6 chúng tôi tính được tỷ lệ
pha tứ giác so với pha mặt thoi có giá trị khoảng 69%. Kết quả này cũng
cho thấy có sự hình thành biên pha hình thái ứng với các thành phần xung
quanh y = 29.6%.
3.2. Ảnh hưởng của thay thế Ca cho Ba lên độ dẫn xoay chiều của
hệ BCT và BZT-BCT.
BTO là vật liệu sắt điện gần như không có sự thiếu hụt oxy nên đóng
góp chủ yếu vào cơ chế dẫn xoay chiều là do sự định xứ hoặc nhảy có
44 44.5 45 45.5 46
BCT-BZT28
BCT-BZT28.8
BCT-BZT29.6
BCT-BZT30
BCT-BZT30.4
2
0
)
200 002
T T
T
200 200 002
T R T
,
I I
I I I
+
=
+ +
F
hướng của các điện tử có trong vật liệu. Để hiểu cơ chế dẫn xoay chiều của
hệ vật liệu BCT chúng tôi đã sử dụng định luật Jonscher’s power dưới
dạng phương trình:
= dc + ac = dc + o
s
(3.5)
trong đó σdc là độ dẫn một chiều – liên quan đến độ dẫn điện tử của vật liệu
và độ dẫn của tiếp xúc điện. Độ dẫn điện xoay chiều được biểu diễn bởi
biểu thức ac = o
s, σo là hằng số và s là hệ số mũ tần số, giá trị của s
thường nhỏ hơn 1 và phụ thuộc vào cơ chế truyền của hạt tải và sự quay
hồi phục của các dipole điện. Hệ số mũ tần số s > 0.5 đặc trưng cho sự
nhảy của đơn plaron trong cấu trúc không đồng nhất, trong khi s <0.5 lại
đặc trưng cho sự nhảy của đa polaron ở hạt không đồng nhất và biên hạt
[16,17], 1.0<s< 2.0 độ dẫn xoay chiều do đóng góp của quá trình quay
phân cực định xứ của các loại phân cực điện có thể có trong vật liệu (phân
cực nguyên tử hay dipole lưỡng cực điện).
Hình 3.5. Độ dẫn xoay chiều phụ thuộc vào tần số của hệ mẫu BCTx
Hình 3.5 chỉ ra số liệu thực nghiệm của độ dẫn và đường cong làm
khớp của hệ mẫu BCT. Ta thấy đường làm khớp khá phù hợp với kết quả
thực nghiệm trong toàn bộ dải tần số đo v