Bê tông cường độ siêu sao là một loại vật liệu mới, được nghiên cứu
và ứng dụng thử nghiệm ở các nước tiên tiến trên thế giới trong vài thập kỷ
gần đây. Đặc tính của loại bê tông này là có cường độ chịu nén rất cao có thể
lên đến từ 100 -:- >200MPa, khả năng chịu kéo khi uốn lên đến 40MPa, khả
năng chịu cắt tăng cao, khả năng chịu tác động va chạm, chịu tải trọng lặp rất
lớn và đặc biệt là có độ bền và sự ổn định lâu dài. Hiện nay trên thế giới đang
từng bước ứng dụng thử nghiệm trong nhiều công trình cầu, nhà cao tầng, các
công trình đặc biệt khác nhằm nâng cao khả năng chịu lực và độ bền của kết
cấu công trình.
Ở Việt Nam, đang phát triển cơ sở hạ tầng, nhiều công trình cầu,
đường hiện đại đang được xây dựng, nên việc nghiên cứu phát triển một loại
vật liệu bê tông mới có cường độ siêu cao để tăng khả năng chịu lực, độ bền
của công trình là vấn đề cần thiết.
Chúng ta có thể nghĩ đến khả năng nghiên cứu chế tạo và ứng dụng
bê tông cường độ siêu cao từ các vật liệu ở Việt Nam để có thể áp dụng thay
thế cho một số dạng kết cấu cầu, đường bộ hiện nay và từng bước nghiên cứu
ứng dụng bê tông cường độ siêu cao này trong thiết kế một số các kết cấu của
công trình cầu, đường, các nhà cao tầng, các công trình đặc biệt khác.
Đó chính là lý do Nghiên cứu sinh chọn đề tài để nghiên cứu.
Tên đề tài “Nghiên cứu thành phần, tính chất cơ học của bê tông cường độ
siêu cao và ứng dụng trong kết cấu cầu”.
Mục đích nghiên cứu:
Hướng lý thuyết: Lý thuyết thành phần hạt đạt độ chặt tối ưu đã được Larard
trình bày. Các hướng dẫn tính toán thành phần theo cấp phối tối ưu của Fuller
năm 1997. Các nghiên cứu thực nghiệm định lượng được thực hiện bỡi
SETRA/AFGC năm 2002; phương pháp thiết kế theo DIN; phương pháp thiết
kế theo ACI-544 Các lý thuyết này nghiên cứu sinh sử dụng trong nghiên
cứu của mình
Hướng thực nghiệm: Định lượng lại thông qua thực nghiệm và từ thực
nghiệm xác định lại các hệ số của các công thức. Đây cũng là một hướng
được một số nước như Hàn Quốc, Mỹ thực hiện. Hướng và mục đích của
nghiên cứu sinh thực hiện; tức là tiến hành theo hướng định lượng lại mô
hình vật liệu từ các điều kiện vật liệu ở Việt Nam thông qua các thí nghiệm
và cũng từ các thí nghiệm xác định lại công thức tính cường độ chịu kéo khi
uốn nhằm tạo ra các thông số phục vụ tính toán kết cấu.
Đối tượng nghiên cứu: Từ vật liệu trong nước, nghiên cứu thực nghiệm xác
định mô hình vật liệu và chế tạo ra bê tông cường độ siêu cao có cường độ
120 -:- 140MPa và ứng dụng trong kết cấu cầu
28 trang |
Chia sẻ: oanh_nt | Lượt xem: 2137 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Tóm tắt luận án Nghiên cứu thành phần, tính chất cơ học bê tông cường độ siêu cao và ứng dụng trong kết cấu cầu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI
NGUYỄN LỘC KHA
NGHIÊN CỨU THÀNH PHẦN, TÍNH CHẤT CƠ HỌC
BÊ TÔNG CƯỜNG ĐỘ SIÊU CAO VÀ ỨNG DỤNG
TRONG KẾT CẤU CẦU
CHUYÊN NGÀNH: XÂY DỰNG CẦU HẦM
MÃ SỐ: 62.58.25.01
TÓM TẮC LUẬN ÁN TIẾN SĨ KỸ THUẬT
NGƯỜI HƯỚNG DẪN KHOA HỌC:
1. GS-TS. Phạm Duy Hữu
2. PGS-TS. Nguyễn Ngọc Long
HÀ NỘI - 2013
2
MỞ ĐẦU
Bê tông cường độ siêu sao là một loại vật liệu mới, được nghiên cứu
và ứng dụng thử nghiệm ở các nước tiên tiến trên thế giới trong vài thập kỷ
gần đây. Đặc tính của loại bê tông này là có cường độ chịu nén rất cao có thể
lên đến từ 100 -:- >200MPa, khả năng chịu kéo khi uốn lên đến 40MPa, khả
năng chịu cắt tăng cao, khả năng chịu tác động va chạm, chịu tải trọng lặp rất
lớn và đặc biệt là có độ bền và sự ổn định lâu dài. Hiện nay trên thế giới đang
từng bước ứng dụng thử nghiệm trong nhiều công trình cầu, nhà cao tầng, các
công trình đặc biệt khác nhằm nâng cao khả năng chịu lực và độ bền của kết
cấu công trình.
Ở Việt Nam, đang phát triển cơ sở hạ tầng, nhiều công trình cầu,
đường hiện đại đang được xây dựng, nên việc nghiên cứu phát triển một loại
vật liệu bê tông mới có cường độ siêu cao để tăng khả năng chịu lực, độ bền
của công trình là vấn đề cần thiết.
Chúng ta có thể nghĩ đến khả năng nghiên cứu chế tạo và ứng dụng
bê tông cường độ siêu cao từ các vật liệu ở Việt Nam để có thể áp dụng thay
thế cho một số dạng kết cấu cầu, đường bộ hiện nay và từng bước nghiên cứu
ứng dụng bê tông cường độ siêu cao này trong thiết kế một số các kết cấu của
công trình cầu, đường, các nhà cao tầng, các công trình đặc biệt khác.
Đó chính là lý do Nghiên cứu sinh chọn đề tài để nghiên cứu.
Tên đề tài “Nghiên cứu thành phần, tính chất cơ học của bê tông cường độ
siêu cao và ứng dụng trong kết cấu cầu”.
Mục đích nghiên cứu:
Hướng lý thuyết: Lý thuyết thành phần hạt đạt độ chặt tối ưu đã được Larard
trình bày. Các hướng dẫn tính toán thành phần theo cấp phối tối ưu của Fuller
năm 1997. Các nghiên cứu thực nghiệm định lượng được thực hiện bỡi
SETRA/AFGC năm 2002; phương pháp thiết kế theo DIN; phương pháp thiết
kế theo ACI-544… Các lý thuyết này nghiên cứu sinh sử dụng trong nghiên
cứu của mình
Hướng thực nghiệm: Định lượng lại thông qua thực nghiệm và từ thực
nghiệm xác định lại các hệ số của các công thức. Đây cũng là một hướng
được một số nước như Hàn Quốc, Mỹ thực hiện. Hướng và mục đích của
nghiên cứu sinh thực hiện; tức là tiến hành theo hướng định lượng lại mô
hình vật liệu từ các điều kiện vật liệu ở Việt Nam thông qua các thí nghiệm
và cũng từ các thí nghiệm xác định lại công thức tính cường độ chịu kéo khi
uốn nhằm tạo ra các thông số phục vụ tính toán kết cấu.
Đối tượng nghiên cứu: Từ vật liệu trong nước, nghiên cứu thực nghiệm xác
định mô hình vật liệu và chế tạo ra bê tông cường độ siêu cao có cường độ
120 -:- 140MPa và ứng dụng trong kết cấu cầu.
3
Phạm vi nghiên cứu: Định lượng lại mô hình vật liệu thông qua thí nghiệm,
Phân tích thực nghiệm ứng xử uốn của dầm để tìm công thức t, phân tích
ứng xử uốn dầm cầu để xác định chiều cao mới của dầm cầu. Nghiên cứu
sinh chỉ nghiên cứu dầm cầu dưới tác dụng của tải trọng tỉnh, các tải trọng
động, tải trọng lặp chưa đề cập trong luận án này.
Ý nghĩa khoa học và thực tiển của đề tài:
- Về lý thuyết: Nghiên cứu ứng dụng các lý thuyết tính toán về độ đặc tối ưu
để thiết kế cấp phối bê tông cường độ siêu cao. Phân tích ứng xử uốn của
dầm và dầm cầu để tìm ra công thức tính cường độ chịu kéo khi uốn t và
chiều cao dầm cầu.
- Về thực nghiệm: Tìm kiếm vật liệu, chế tạo ra cấp phối vật liệu bê tông
cường độ siêu cao từ 120 -140MPa với vật liệu trong nước. Từ thực nghiệm
nêu lên các đặc trưng cơ học của bê tông cường độ siêu và đề xuất công thức
tính cường độ chịu kéo khi uốn t; phân tích ứng xử uốn của dầm cầu và đề
xuất chiều cao dầm cầu
Chương 1: TỔNG QUAN VỀ CÁC NGHIÊN CỨU VÀ ỨNG DỤNG BÊ
TÔNG CƯỜNG ĐỘ SIÊU CAO TRÊN THẾ GIỚI VÀ VIỆT NAM
1.1.Các công trình nghiên cứu liên quan mật thiết đến đề tài luận án đã
được công bố trên thế giới
Bê tông cường độ siêu cao là một loại vật liệu mới được nghiên cứu
và phát triển trên thế giới từ năm 1990. Các ứng xử cơ học, các công thức về
tính toán cũng như các hướng dẫn thiết kế và kỹ thuật xây dựng đã được công
bố ở Pháp, Mỹ và Đức. Một số ứng dụng đầu tiên ở Cananda, Châu Âu, Châu
Á và ở Mỹ đã chứng minh những lợi ích của loại vật liệu mới này về chi phí,
tính bền vững và nhiều tính năng ưu việt khác.
Với những ưu điểm vượt trội của bê tông này, cho phép chúng ta có
những suy nghĩ về việc nghiên cứu bê tông cường độ siêu cao từ các vật liệu
thành phần trong nước, trên cơ sở tham khảo những kết quả nghiên cứu của
các nước trên thế giới, sẽ mở ra một hướng đi mới trong ngành vật liệu xây
dựng và kết cấu công trình
1.2. Các nghiên cứu về bê tông cường độ siêu cao ở Hoa Kỳ, ở Châu Âu
và Châu Á
Các lý thuyết mới về thành phần hạt theo độ đặc tối ưu đã được
Larrard trình bày
Các lý thuyết về cấp phối hạt tối ưu đã được Schmidt và Fuller trình
bày. Các hướng dẫn thiết kế đã được SETRA / AFGC công bố
Các hướng dẫn thiết kế và công nghệ chế tạo đã được nghiên cứu và
khuyến cáo bởi RILEM, DIN;
Các thí nghiệm về định lượng lại mô hình vật liệu đã được FHWA
(Hoa Kỳ) và Hàn Quốc thực hiện.
4
Các hình ảnh từ 1.1 -:-1.6 giớ
dụng trong quân sự điển hình
Hình 1.1: So sánh về trọng lượng và chiều cao c
bê tông truy
Hình 1.2: Các cầu sử dụng bê tông cường đ
M
Hình 1.3:Cầu người đi bộ ở Seoul Hàn
Quốc năm 2002
Hình 1.5: Cầu Bourg –lès – Valence,
France năm 2004
i thiệu các kết cấu cầu, nhà và các ứng
ủa dầm bê tông cường độ siêu cao và
ền thống
ộ siêu cao mặt cắt dầm chữ T và chữ ở
ỹ
Hình 1.4: Mái nhà cửa sổ Millau năm
2004
Hình 1.6: Thử nghiệm khả năng chịu
công phá sử dụng trong quân sự Iran
5
1.3.Các công trình nghiên cứu liên quan mật thiết đến đề tài luận án đã
được công bố ở Việt Nam
Ở Việt Nam: bê tông cường độ siêu cao là một đề tài còn khá mới.
Đến năm 2008 mới được một số nhà khoa học ở các trường ĐH Giao thông
Vận tải; ĐH Xây dựng; ĐH Bách Khoa TP Hồ Chí Minh… bắt đầu nghiên
cứu về bê tông này. Các nghiên cứu nêu trên được xem là những nghiên cứu
ban đầu về bê tông siêu cường độ ở Việt Nam.
Như vậy bê tông cường độ siêu cao đối với Thế giới và Việt Nam
vẫn còn mang tính thời sự rất lớn, cần thiết có nhiều nghiên cứu để chế tạo ra
bê tông này từ vật liệu trong nước góp phần bổ sung hoàn thiện hệ thống lý
luận, tính toán và từng bước đưa vào ứng dụng thử nghiệm cho một số công
trình xây dựng.
1.4.Mục tiêu của đề tài
Từ vật liệu trong nước, theo các hướng dẫn của thế giới; nghiên cứu
chế tạo ra bê tông cường độ siêu cao từ 120 -:- 140MPa. Nghiên cứu thực
nghiệm uốn của dầm bê tông cốt thép sử dụng bê tông cường độ siêu cao để
xác định hệ số K trong công thức tính cường độ chịu kéo khi uốn. Phân tích
ứng xử uốn của dầm cầu sử dụng bê tông cường độ siêu cao từ đó đề xuất
chiều cao của dầm cầu.
1.5.Nội dung và phương pháp nghiên cứu
Nghiên cứu lựa chọn vật liệu, thiết kế thành phần, thí nghiệm các
tính chất cơ học của bê tông cường độ siêu cao từ 120 – 140MPa. Phân tích
uốn kết cấu dầm, dầm cầu và từ đó định hướng sử dụng trong kết cấu. Sử
dụng phương pháp lý thuyết và thực nghiệm để xác định về thành phần, các
tính năng cơ học của bê tông cường độ siêu cao và công thức tính cường độ
chịu kéo khi uốn và chiều cao dầm cầu.
Chương 2: VẬT LIỆU CHẾ TẠO VÀ THIẾT KẾ THÀNH PHẦN
BÊ TÔNG CƯỜNG ĐỘ SIÊU CAO
2.1 Vật liệu chế tạo:
2.1.1/ Xi măng, phụ gia siêu dẻo và muội Silic
Nghiên cứu sinh sử dụng xi măng PC40-Bút Sơn loại I phù hợp với
quốc tế và thực tế xi măng ở Việt nam
Luận án sử dụng phụ gia Policacbol silat của hãng Sika Việt Nam với
kí hiệu 3000-20 các tính năng phù hợp tiêu chuẩn ASTM C494 loại C
Luận án sử dụng muội Silic do Sika Việt Nam bán trên thị trường
cũng có tính năng đảm bảo các tiêu chuẩn ASTM 1230-95a, hình 2.1
6
Hình 2.1: Mu
2.1.2/ Cốt liệu lớn và bột quarzt
Cốt liệu lớn: Sử dụng cát quar
Thanh Sơn-Phú Thọ theo các tiêu chu
sinh đã khai thác chế tạo cát Quartz (là v
phối bê tông) đường kính lớn nhất là 0,6 mm
2.1 và hình 2.2
Bảng 2.1: Thành phần cấp phối hạt của cát
Cỡ sàng (mm) Lư
0,63
0,315
0,14
0,075
Bột Quartz được nghiền nhỏ từ đá Q
kính khoảng 27,9m như hình 2.3.
Hình 2.2: Cát Quartz
2.1.3/ Sợi thép
Sử dụng sợi thép của hãng BeKeart
OL13-20 có đường kính D = 0,2 mm chi
2.000 MPa, với hàm lượng là 2% theo th
Hình 2.4
Như vậy các vật liệu chính đượ
độ siêu cao và các thí nghiệm sau này
và bột Quartz được chế tạo từ đá Quartz khai t
ội silic
zt được nghiền ra từ đá quarzt tại mỏ
ẩn hướng dẫn của quốc tế. Nghiên cứu
ật chất dạng hạt lớn nhất trong cấp
, thành phần cấp phối như bảng
Quarzt
ợng lọt trên sàng i, A%
100
67,1
41,6
13,9
uartz Thanh Sơn-Phú Thọ với đường
Hình 2.3: Bột Quartz
Đức, sợi thép loại Dramix kí hiệu là
ều dài L = 13 mm. Giới hạn chảy là
ể tích, như ở hình 2.4
: Sợi thép
c sử dụng trong bê tông bê tông cường
là Xi măng PC 40 Bút Sơn. Cát Quartz
hác từ mỏ đá Thanh Sơn –Phú
7
Thọ, muội Silic và phụ gia siêu dẻo củ
được nhập từ Thượng Hải Trung Quốc. Đánh giá v
cho thấy rằng có đủ nguồn vật liệu có s
chuẩn quốc tế để chế tạo bê tông cường đ
2.2/ Chế tạo bê tông cường độ siêu cao
2.2.1/ Mở đầu
Trong luận án, lý thuyết tối ưu hóa đ
được sử dụng nghiên cứu tính toán chính, lý thuy
tối ưu Fuller sẽ được xem xét đối chiếu
2.2.2/ Tính toán lựa chọn hỗn hợp bê tông
Từ lý thuyết tối ưu hóa độ đặc của Mooney
Thomson, Larard nghiên cứu sinh đã ti
3 công thức bê tông được kí hiệu như sau: C1, C2, C3
Bảng 2.2: Công thức thiết kế
Thành phần
Xi măng Bút sơn PC40, kg/m
Muội silic (25%X), kg/m3
Cát Quartz Q1, kg/m3
Bột Quartz Q2, kg/m3
Sợi thép, kg/m3
Chất siêu dẻo, kg
Nước, lít
Tỷ lệ N/X
Biểu đồ phân bố thành phần hạt với cỡ hạt lớn nhất l
nhỏ nhất là 0,00001mm theo hình 2.5.
Hình 2.5: Biểu đồ thành ph
2.2.3/ Kiểm tra cấp phối
Căn cứ vào các công thức bê tông
tông và đối chiếu với đường cấp phối tối
a hãng Sika Việt Nam, sợi thép Dramix
ề nguồn cung cấp vật liệu
ẵn ở Việt Nam phù hợp với các tiêu
ộ siêu cao.
theo lý thuyết tối ưu về độ đặc
ộ đặc của Mooney và Larrad
ết về đường cong cấp phối
.
, theo các hướng dẫn của
ến hành tính toán và đã thiết lập được
như ở bảng 2.2
bê tông cường độ siêu cao
C1 C2 C3
3 800 850 900
195,5 195,5 207
900 935 977
280 150 120
160 170 160
16 17 18
160 170 170
0,20 0,20 0,20
à 0,6mm, cỡ hạt
ần hạt của các cốt liệu
, lập nên đường cấp phối của bê
ưu của Fuller theo biểu đồ hình 2.6
8
Hình 2.6: Cấp phối của bê tông cường độ siêu cao đối chiếu với cấp phối Fuller
Kết quả kiểm tra đối chiếu cấp phối thiết kế C1, C2, C3 cho thấy
rằng các cấp phối được thiết kế rất sát với cấp phối theo công thức của Fuller.
Nghiên cứu ở chương 2 đã đạt được kết quả sau
- Đã khai thác và chế tạo cát và bột quartz theo tiêu chuẩn.
- Đã lựa chọn được các loại xi măng, muội Silic, sợi thép phù hợp với
bê tông cường độ siêu cao
- Sử dụng mô hình tối ưu hoá độ đặc đã thiết kế được thành phần bê
tông C1, C2, C3.
- Kiểm tra thành phần cấp phối hạt phù hợp với các nghiên cứu của
Pháp và lý thuyết cấp phối tối ưu của Fuller.
Chương 3: THÍ NGHIỆM CƯỜNG ĐỘ NÉN, UỐN VÀ MÔ ĐUN ĐÀN
HỒI CỦA BÊ TÔNG CƯỜNG ĐỘ SIÊU CAO
3.1/ Mở đầu
Trong chương này, Nghiên cứu sinh trình bày thí nghiệm cường độ
chịu nén, cường độ chịu kéo đặc trưng và mô đun đàn hồi của bê tông cường
độ siêu cao.
3.1.1/ Cường độ chịu nén
Cường độ chịu nén được xác định với bê tông ở 3, 7, 28 ngày tuổi.
Theo thì các mẫu hình trụ có kích thước d=10cm, h =20cm để xác định
cường độ chịu nén. Mẫu được bảo dưỡng trong điều kiện bình thường.
3.1.2/ Ứng xử kéo khi uốn
Ứng xử kéo khi uốn của vật liệu được đặc trưng bằng 3 giá trị thí
nghiệm như sau:
- Cường độ kéo khi uốn đàn hồi của bê tông cường độ siêu cao (ftj). Giá trị
này ứng với phần biến dạng đàn hồi ở thời điểm xuất hiện vết nứt đầu tiên
với biến dạng tương đối là 1‰. Trị số độ mở rộng vết nứt là 0,05mm, độ
võng trong phạm vi 1mm.
- Cường độ chịu kéo uốn lớn nhất (ứng với mômen uốn lớn nhất) thông
thường ứng với biến dạng là 3‰.
- Cường độ chịu kéo khi uốn ở thời điểm biến dạng tối đa ứng với độ võng
của dầm thí nghiệm là 10mm, thí nghiệm cường độ kéo uốn được thực hiện
theo Tiêu chuẩn của Châu Âu (RILEM).
9
3.1.3/ Quy trình thí nghiệm uốn mẫu tr
Hai loại thí nghiệm được đề xuất trên th
Kiểu 1: Thí nghiệm uốn 4 điểm trên m
suy ra cường độ chịu kéo sau khi điều ch
Kiểu 2: Thí nghiệm uốn 3 điểm trên m
pháp phân tích ngược theo hướng dẫn c
Nghiên cứu sinh chọn phương pháp thí nghi
theo hướng dẫn của Châu Âu (hình 3.1)
3.1.4/ Kích thước mẫu (theo tiêu chu
Các mẫu hình lăng trụ mặt c
a=15cm. Mẫu thử có kích thước: 15*15*60
a. Thiết bị thí nghiệm
Trong thí nghiệm uốn 4 điểm
bị đo cần được cố định trên mẫu bằng một bộ phận đặc biệt để đo độ v
thực của mẫu khi thí nghiệm (hình 3.1).
Hình 3.1: Mô hình thí nghi
b. Thu thập kết quả
Các số liệu trong khi thí nghiệm cần đ
Các số liệu cần thu thập là:
+ Độ võng
+ Lực
+ Biểu đồ tải trọng – độ võng
c. Tính toán độ mở rộng vết nứt, biến dạng…
Biết độ võng f0 ứng với đoạn cuối của v
nứt (w) được đánh giá qua quan hệ độ v
AFGC):
3.2/ Chế tạo các mẫu thí nghiệm
3.3/ Các kết quả thí nghiệm:
+ Kết quả thử nghiệm độ ch
3.1; 3.2 ; 3.3 và các hình 3.2 ; 3.3
ụ và phân tích
ế giới.
ẫu lăng trụ không có khấc cho phép
ỉnh một số quan hệ hiệu ứng tỉ lệ.
ẫu lăng trụ có khấc, áp dụng phương
ủa RILEM.
ệm uốn bốn điểm trên mẫu dầm
ẩn Châu Âu)
ắt vuông cạnh a và chiều dài 4*a, với
(cm)
theo các hướng dẫn của Châu Âu, thiết
õng
ệm uốn 4 điểm
ược thực hiện với tần số 5 Hz.
ùng đàn hồi, độ mở rộng vết
õng theo hướng dẫn của (SETRA –
ảy lan, cường độ chịu nén theo bảng
10
Bảng 3.1: Kết quả thí nghiệm độ chảy lan
Ký hiệu mẫu thử C1 C2 C3
Độ sụt của bê
tông (cm)
24,00 29,00 27,00
Độ chảy lan (cm) 45,00 64,00 50,50
Ngày đúc mẫu 29/3/2011 1/4/2011 6/4/2011
Hình 3.2: Mẻ trộn thử
Hình 3.3: Thí nghiệm độ chảy lan
Bảng 3.2: Kết quả cường độ chịu nén
Stt
Ký
hiệu
mẫu
Ngày
đúc
Cường độ chịu nén (MPa)
R3 TB3 S3 R7 TB7 S7 R 28 TB28 S28
C1
C11 29/3 65,89
69,77
3,32
109,89
106,59
5,33
134,70
127,59
5,22
C12 29/3 66,53 100,63 122,63
C13 29/3 71,72 101,23 126,90
C14 29/3 74,65 111,76 132,63
C15 29/3 72,48 102,36 119,79
C16 29/3 67,36 113,69 128,90
C2
C21 1/4 68,55
72,65
3,69
111,47
112,46
5,28
121,36
130,01
5,73
C22 1/4 67,89 106,34 128,63
C23 1/4 71,66 115,19 137,24
C24 1/4 75,12 120,69 133,68
C25 1/4 78,34 115,31 124,36
C26 1/4 74,35 105,73 134,80
C3
C31 6/4 82,42
84,75
5,07
115,51
113,06
5,57
142,56
139,21
6,21
C32 6/4 80,23 112,36 132,21
C33 6/4 77,64 105,61 129,38
C34 6/4 86,62 122,38 144,77
11
C35 6/4 91,65 107,34 145,61
C36 6/4 89,92 115,18 140,74
Ri: Cường độ nén ngày thứ i
TBi: Cường độ nén trung bình ngày thứ i
Si: Độ lệch chuẩn theo cường độ nén ngày thứ i
Bảng 3.3: Cường độ trung bình của các nhóm mẫu
Nhóm Cường độ trung bình (MPa)
Độ lệch chuẩn
(S)
Biến dạng tương đối
(‰)
C1 127,59 5,22 4,02
C2 130,01 5,73 3,55
C3 139,21 5,21 3,75
Từ kết quả thử cường độ nén của ba cấp phối C1, C2, C3 xây dựng được
các biểu đồ thể hiện các quan hệ (cường độ – thời gian); (cường độ - tỉ lệ
nước/chất kết dính) theo hình 3.4 ; 3.5:
Hình 3.4: Quan hệ giữa cường độ chịu
nén theo thời gian
Hình 3.5: Quan hệ giữa cường độ chịu
nén với tỷ lệ N/CKD của C3
+Kết quả thử nghiệm cường độ chịu kéo - uốn
Thí nghiệm uốn 4 điểm được thực hiện tại trường Đại Học Giao
thông Vận tải. Trình tự thí nghiệm uốn tuân thủ theo hướng dẫn của RILEM,
hình 3.6.
Hình 3.6: Thí nghiệm uốn và dạng phá hoại mẫu
Kết quả thí nghiệm được trình bày ở trong bảng 3.4, hình 3.7
Bảng 3.4: Quan hệ giữa tải trọng và độ võng
Độ võng
(mm)
Tải trọng P (kN)
PM1 PM2 PM3 PM4 PM5 PM6
0
20
40
60
80
100
120
140
160
3 7 28 Ngày
MPa
C1
C2
C3
0
50
100
150
0.196 0.205 0.223 N/CKD
MPa
3
7
28
12
0,00 0,000 0,000 0,000 0,000 0,000 0,000
0,20 75,470 70,637 112,226 80,176 73,181 97,091
0,22 80,303 78,777 118,204 94,421 76,361 101,161
0,25 83,865 82,974 126,598 107,775 80,558 106,884
0,30 94,039 100,653 142,750 148,219 90,351 119,475
0,40 107,520 119,094 162,209 207,995 106,249 126,343
0,50 112,862 122,910 179,124 227,199 118,077 128,251
0,70 115,152 123,673 205,196 247,930 126,216 132,066
1,00 119,094 123,673 210,284 291,554 126,343 132,066
2,00 89,969 79,413 159,792 219,000 90,732 78,014
3,00 66,949 57,029 103,959 143,667 73,181 59,446
5,00 29,939 32,864 57,029 106,000 51,051 29,558
10,00 12,134 11,116 8,191 42,420 22,817 9,336
Hình 3.7: Biểu đồ quan hệ giữa tải trọng và độ võng
Quan hệ giữa cường độ và độ mở rộng vết nứt, biến dạng… trong
trường hợp uốn 4 điểm được tính theo hướng dẫn của SETRA/AFGC, kết quả
ở bảng 3.5
Bảng 3.5: Quan hệ giữa cường độ và biến dạng của bê tông cường độ siêu cao
Mẫu
Độ
võng
(mm)
Độ mở rộng vết
nứt W (mm)
Biến
dạng
(o/oo)
Tải
trọng
P(kN)
Cường độ
chịu kéo
khi uốn
Ru (MPa)
Cường độ
đặc trưng
0,7265xRu
(MPa)
C1
0,092 0,05 0,2 73,47 9,80 7,12
0,2 0,18 2 79,50 10,60 7,70
0,3 0,30 3 122,68 16,36 11,88
0,9 1,02 10 97,74 13,03 9,47
2,12 2,48 25 84,17 11,22 8,15
2,55 3,00 32 0,00 0,00 0,00
13
C2
0,092 0,05 0
0,2 0,18 2
0,3 0,30 3
0,9 1,02 10
2,12 2,48 25
2,55 3,00 32
0,092 0,05 0
C3
0,2 0,18 2
0,3 0,30 3
0,9 1,02 10
2,12 2,48 25
+ Mô hình ứng suất biến dạng
Xây dựng biểu đồ quan hệ ứng suất biến dạng theo
Âu (SETRA/AFGC) cho nhóm mẫu C3
hình 3.8.
Hình 3.8: Biểu đồ quan hệ giữa ứng suấ
cao nhóm mẫu C3 lập theo hư
+Thử nghiệm Mô đun đàn h
- Thí nghiệm mô đun đàn hồi tĩnh và h
cao theo tiêu chuẩn ASTM mẫu kích thư
nghiệm là máy nén đến 150 tấn (1500
Hình 3.9: Thí nghi
,2 85,05 11,34 8,24
88,51 11,80 8,57
129,20 17,23 12,52
110,42 14,72 10,70
84,23 11,23 8,16
0,00 0,00 0,00
,2 90,47 12,06 8,76
126,26 16,83 12,23
251,19 33,49 24,33
210,67 28,09 20,41
159,74 21,30 15,47
hướng dẫn Châu
làm cơ sở cho việc phân tích kết cấu,
t - biến dạng của bê tông cường độ siêu
ớng dẫn của SETRA/AFGC
ồi
ệ số Poisson của bê tông cường độ siêu
ớc D=15cm, h=30. Thiết bị thí
kN), theo hình 3.9
ệm mô đun đàn hồi
14
Kết quả trung bình thí nghiệm được trình bày trong bảng 3.6
Bảng 3.6: Kết quả thí nghiệm mô đun đàn hồi
Nhóm mẫu thử C1 C2 C3
Cường độ nén (MPa) 127,59 130,01 139,21
E (Mpa) 46500 47200 49300
E= 9200 x f1/3cj 46085 46449 47565
Sai số 1,009 1,016 1,038
+Bình luận kết quả
Căn cứ vào kết quả thí nghiệm thì thấy rằng : E= 9200 x f1/3cj
Hệ số K0 =9200, nằm trong khoảng hướng dẫn của các tiêu chuẩn Châu Âu
+Kết luận về khả năng chịu nén, kéo khi uốn và mô đun đàn hồi
của bê tông cường độ siêu cao
Với 3 thành phần bê tông đã thực hiện cho thấy cấp phối C3 (theo bảng
3.7) có cường độ nén cao nhất là 139,2 MPa, cường độ chịu kéo khi uốn đặc
trưng lớn nhất là 24,22MPa
Bảng 3.7: Thành phần của bê tông cấp phối C3
Nước, kg (cuối cùng) 217,57 kg
Xi măng 900 kg
Cát quarts d=0,6mm (khô) 910 kg
Bột quart d=27m (khô) 120 kg
Muội silic d=1m 207 kg
Sợi thép d=0,2mm 160 kg
Chất siêu dẻo 22,46kg
3.4/ Một số nhận xét
Với vật liệu trong nước đã sản xuất được bê tông cường độ siêu cao
với các tính năng sau :
- Độ chảy lan của hỗn hợp thử nghiệm từ 45 – 64 cm, phù hợp với
các yêu cầu quốc tế độ chảy lan >50cm.
- Cường độ chịu nén của bê tông cường độ siêu cao thử nghiệm đạt
t