Theo tính toán của các nhà khoa học với tốc độ sử dụng năng
lượng như hiện nay, nhiên liệu hóa thạch sẽ cạn kiệt trong vòng 50
năm tới. Do vậy, việc tìm kiếm nguồn năng lượng thay thế đang là
nhu cầu cấp thiết. Đối với Việt Nam, định hướng phát triển kinh tế
đến năm 2020 kinh tế biển sẽ chiếm trên 50% GDP. Do đó nhu cầu
cần thiết về năng lượng điện để cung cấp cho nền kinh tế nói chung
và kinh tế biển nói riêng là rất quan trọng, đặc biệt điện năng phục vụ
an ninh quốc phòng trên biển (nguồn điện sử dụng trên các nhà dàn
DKI, các ngọn đèn hải đăng v.v.) là nhiệm vụ cấp bách.
Ngoài ra, Việt Nam với lợi thế là một quốc gia có bờ biển trải dài
trên 3260 km, cùng với hơn 3000 đảo, quần đảo lớn nhỏ và trên một
triệu km2 mặt biển cho thấy nguồn năng lượng từ biển là rất lớn.
Nhằm khai thác nguồn năng lượng to lớn của biển, tác giả đề xuất
hướng nghiên cứu của luận án về xây dựng mô hình thiết bị để
chuyển đổi từ năng lượng sóng biển sang điện năng.
27 trang |
Chia sẻ: thientruc20 | Lượt xem: 687 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Tóm tắt luận án Nghiên cứu xây dựng mô hình cơ học và tính toán thiết kế thiết bị phát điện từ năng lượng sóng biển, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
-----------------------------
Nguyễn Văn Hải
NGHIÊN CỨU XÂY DỰNG MÔ HÌNH CƠ HỌC VÀ TÍNH
TOÁN THIẾT KẾ THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG
SÓNG BIỂN
Chuyên ngành: Cơ kỹ thuật
Mã số: 9 52 01 01
TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ VÀ CƠ
KỸ THUẬT
Hà Nội – 2019
Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ -
Viện Hàn lâm Khoa học và Công nghệ Việt Nam.
Người hướng dẫn khoa học: GS. TSKH. Nguyễn Đông Anh
Phản biện 1:
Phản biện 2:
Phản biện 3: .
Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp
Học viện, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm
Khoa học và Công nghệ Việt Nam vào hồi giờ ..’, ngày tháng
năm 2019.
Có thể tìm hiểu luận án tại:
- Thư viện Học viện Khoa học và Công nghệ
- Thư viện Quốc gia Việt Nam
1
MỞ ĐẦU
1. Lý do lựa chọn đề tài
Theo tính toán của các nhà khoa học với tốc độ sử dụng năng
lượng như hiện nay, nhiên liệu hóa thạch sẽ cạn kiệt trong vòng 50
năm tới. Do vậy, việc tìm kiếm nguồn năng lượng thay thế đang là
nhu cầu cấp thiết. Đối với Việt Nam, định hướng phát triển kinh tế
đến năm 2020 kinh tế biển sẽ chiếm trên 50% GDP. Do đó nhu cầu
cần thiết về năng lượng điện để cung cấp cho nền kinh tế nói chung
và kinh tế biển nói riêng là rất quan trọng, đặc biệt điện năng phục vụ
an ninh quốc phòng trên biển (nguồn điện sử dụng trên các nhà dàn
DKI, các ngọn đèn hải đăng v.v.) là nhiệm vụ cấp bách.
Ngoài ra, Việt Nam với lợi thế là một quốc gia có bờ biển trải dài
trên 3260 km, cùng với hơn 3000 đảo, quần đảo lớn nhỏ và trên một
triệu km2 mặt biển cho thấy nguồn năng lượng từ biển là rất lớn.
Nhằm khai thác nguồn năng lượng to lớn của biển, tác giả đề xuất
hướng nghiên cứu của luận án về xây dựng mô hình thiết bị để
chuyển đổi từ năng lượng sóng biển sang điện năng.
2. Mục tiêu nghiên cứu của luận án
Xây dựng được mô hình thiết bị phát điện từ năng lượng sóng
biển, thiết bị hoạt động hiệu quả và phù hợp với điều kiện thực tế
biển Việt Nam; Xác định tối ưu hệ số cản của mô tơ phát điện, các
thông số mô hình để công suất điện thiết bị phát ra đạt lớn nhất;
Thiết kế, chế tạo được một thiết bị phát điện từ năng lượng sóng
biển. Nguồn điện của thiết bị phát ra ở 2 mức điện áp 12 VDC, 220
VAC tần số 50 Hz thực sine theo tiêu chuẩn điện lưới quốc gia Việt
Nam. Thiết bị có khả năng ứng dụng trong việc làm phao báo dẫn
đường biển hay làm nguồn cấp điện cho các đèn hải đăng ngoài biển.
2
3. Phương pháp nghiên cứu
Luận án sử dụng các phương pháp giải tích, kết hợp phương pháp
mô phỏng số và thực nghiệm, cụ thể được mô tả như sau:
- Sử dụng phương pháp giải tích xác định tối ưu hệ số cản của mô
tơ phát điện, hệ số đàn hồi của lò xo và kích thước phao của thiết bị.
- Trong tính toán mô phỏng số sử dụng phương pháp Runge-
Kutta bậc 4 giải số phương trình chuyển động phi tuyến của mô hình,
phương pháp Simpson tính tích phân số. Xác định mức công suất cơ
hệ của thiết bị nhận được từ năng lượng sóng biển và khảo sát sự
hoạt động của thiết bị theo các điều kiện sóng biển.
- Tính toán thiết kế và chế tạo thiết bị phát điện, thử nghiệm thiết
bị hoạt động thực tế tại biển để kiểm chứng kết quả lý thuyết và phân
tích hiệu suất hoạt động của thiết bị.
4. Ý nghĩa khoa học và thực tiễn
- Đưa ra được một phương pháp nghiên cứu với cách tiếp cận từ
việc khảo sát các điều kiện thực tế của sóng biển để thực hiện xây
dựng mô hình cơ học, tính toán thiết kế, chế tạo và thử nghiệm thiết
bị hoạt động thực tế tại biển.
- Chế tạo được một mẫu thiết bị phát điện từ năng lượng sóng
biển, hoạt động hiệu quả và phù hợp với điều kiện thực tế biển Việt
Nam.
- Thiết bị có khả năng sử dụng trong việc làm phao báo dẫn
đường biển hay làm nguồn cấp điện cho các đèn hải đăng.
5. Cấu trúc của luận án
Cấu trúc của luận án gồm: phần mở đầu, bốn chương nội dung,
phần kết luận và kiến nghị, phần danh mục công trình của tác giả, tài
liệu tham khảo và phụ lục.
3
CHƯƠNG 1. TỔNG QUAN CÁC CÔNG TRÌNH NGHIÊN
CỨU VỀ THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG
BIỂN VÀ KHẢ NĂNG ỨNG DỤNG THIẾT BỊ TẠI VIỆT NAM
1.1. Tổng quan các công trình nghiên cứu về thiết bị phát điện từ
năng lượng sóng biển trên thế giới
Trên thế giới, việc nghiêu cứu, chế tạo các thiết bị phát điện từ
nguồn năng lượng sóng biển đang được quan tâm và phát triển mạnh.
Đặc biệt ở các vùng đảo xa ngoài biển, các thiết bị phát điện từ
nguồn năng lượng sóng biển đã đáp ứng được một phần trong nhu
cầu sử dụng điện năng. Các mô hình thiết bị được nghiên cứu dưới
nhiều dạng khác nhau như thiết bị phát điện lắp đặt trên bờ, thiết bị
phát điện hoạt động ngoài biển theo phương pháp thả nổi trên mặt
biển hoặc gắn cố định ở đáy biển. Hiện nay các mô hình thiết bị này
đã, đang được khai thác sử dụng tại một số nước như: Anh, Bồ Đào
Nha, Canada, Đan Mạch, Hàn Quốc, Mỹ, Na Uy, Nhật Bản, Pháp,
Tây Ban Nha, Thụy Điển v.v. [1-19].
Từ các nghiên cứu và phân tích cho thấy các mô hình thiết bị
phát điện đã, đang được nghiên cứu chế tạo theo nhiều cách thức.
Trong các mô hình thiết bị, mô tơ phát điện được thiết kế hoạt động
dưới dạng chuyển động quay tròn hoặc chuyển động tịnh tiến lên
xuống theo phương thẳng đứng. Mỗi thiết bị đều có các ưu nhược
điểm khác nhau, tùy theo khả năng chế tạo của từng đơn vị để thiết
bị nghiên cứu chế tạo hoạt động hiệu quả và phù hợp với thực tế sử
dụng.
1.2. Tổng quan các công trình nghiên cứu về thiết bị phát điện từ
năng lượng sóng biển tại Việt Nam
Tại Việt Nam, một số đơn vị đã, đang tiến hành nghiên cứu chế
tạo thiết bị phát điện từ năng lượng sóng biển như: Viện Nghiên cứu
4
Cơ khí thực hiện thiết kế chế tạo thiết bị phát điện từ năng lượng
sóng biển, mô hình hoạt động nổi trên mặt biển dạng rắn biển
(pelamis), thiết bị đã hoạt động thử nghiệm tại biển Hòn Dấu - Hải
Phòng và cung cấp điện năng cho bộ đội biên phòng đóng trên đảo
sử dụng [24]; Đại học Quốc gia Hà Nội đã thực hiện chế tạo thiết bị
phát điện từ năng lượng sóng biển dạng thả nổi trên mặt biển, với
mô tơ phát điện loại chuyển động tịnh tiến theo phương thẳng đứng.
Thiết bị được tiến hành thử nghiệm ở biển, với công suất điện phát
ra đã nhận được còn hạn chế [26,27]; Viện Khoa học Năng lượng –
VAST đã thực hiện chế tạo thiết bị phát điện từ năng lượng sóng
biển hoạt động cố định trên mặt biển. Trong thiết bị chế tạo đã sử
dụng loại mô tơ phát điện thủy điện trục đứng công suất 60 W, công
suất điện phát ra khi thử nghiệm tại biển đã nhận được 50,92 W [28].
Tại Viện Cơ học - VAST, đã thực hiện các nghiên cứu về
khảo sát đặc tính năng lượng của thiết bị chuyển đổi năng lượng sóng
dạng phao nổi, để tiến tới đề xuất thiết kế, tính toán và chế tạo các
thiết bị chuyển đổi năng lượng sóng biển phù hợp với điều kiện chế
tạo và thực tế sử dụng [30]. Ngoài ra từ năm 2013, trong công tác
chuyên môn, tác giả đã thực hiện nghiên cứu tính toán mô phỏng số
về mô hình thiết bị phát điện từ năng lượng sóng biển. Mô hình thiết
bị được tính toán với mô tơ phát điện chuyển động tịnh tiến lên
xuống theo phương thẳng đứng, phát điện trực tiếp và gắn cố định ở
đáy biển [31]. Tác giả đã chủ nhiệm đề tài “Nghiên cứu, thiết kế, chế
tạo mẫu hệ thống phát điện bằng năng lượng tái sinh đa năng, mã
số đề tài VAST 02.04/11-12” [32]. Trong đề tài đã thiết kế chế tạo
được một hệ thống phát điện bằng năng lượng tái sinh từ ba nguồn
năng lượng đầu vào là năng lượng mặt trời, gió và sóng biển. Trong
đó phần nguồn đầu vào từ năng lượng sóng biển được tính toán thiết
5
kế, chế tạo chờ sẵn để ghép nối tích hợp với thiết bị phát điện từ
năng lượng sóng biển sẽ được nghiên cứu chế tạo trong luận án.
1.3. Nghiên cứu khả năng ứng dụng thiết bị phát điện từ năng
lượng sóng biển tại Việt Nam và định hướng nghiên cứu của luận
án
Việt Nam là một quốc gia có bờ biển trải dài trên 3260 km, cùng
hơn 3000 hòn đảo và trên 1 triệu km2 mặt biển cho thấy nguồn năng
lượng từ biển là rất lớn. Từ các số liệu quan trắc, khảo sát cho thấy
độ cao sóng biển trung bình ở ven bờ từ 0,5÷1,2 m với chu kỳ sóng
từ 2÷8 giây, ở ngoài khơi độ cao sóng từ 1,2÷2 m với chu kỳ sóng từ
6÷8 giây, đặc biệt khi biển động độ cao sóng ven bờ đạt từ 3,5÷5 m
và ở ngoài khơi từ 6÷9 m [34-37]. Đây là nguồn năng lượng dồi dào,
rất phù hợp cho các thiết bị phát điện từ năng lượng sóng biển có
công suất phát điện ở mức vừa và nhỏ khai thác hoạt động. Hơn nữa,
nhu cầu về điện năng để cung cấp cho nền kinh tế biển, điện năng
phục vụ an ninh quốc phòng ngoài biển đảo là nhiệm vụ cấp bách.
Do vậy, việc nghiên cứu chế tạo mẫu thiết bị phát điện từ năng
lượng sóng biển nhằm đáp ứng nhu cầu thực tế là cần thiết.
Định hướng nghiên cứu của luận án:
Từ các phân tích đã cho thấy loại mô hình thiết bị phát điện gắn
cố định ở đáy biển là phù hợp. Trong các mô hình thiết bị này, các
mô tơ phát điện đều sử dụng loại chuyển động tịnh tiến lên xuống
theo phương thẳng đứng, các phương trình chuyển động được thiết
lập ở bài toán tuyến tính và sự phi tuyến trong mô hình cũng chưa
được xét đến. Việc nghiên cứu tối ưu mới chỉ được xét ở tối ưu hệ số
cản của mô tơ phát điện để sử dụng trong tính toán chế tạo mô tơ
6
phát điện chuyển động tịnh tiến [22]. Trong đó, các tính toán tối ưu
về kích thước phao và hệ số đàn hồi của lò xo cũng chưa được đề
cập. Ngoài ra, tác giả nhận thấy loại mô tơ phát điện công nghiệp
chuyển động quay tròn cũng chưa được đưa vào sử dụng trong các
tính toán thiết kế và chế tạo thiết bị phát điện gắn cố định ở đáy biển.
Với mục tiêu nghiên cứu của luận án, nhằm tính toán thiết kế và
chế tạo được một thiết bị phát điện từ năng lượng sóng biển. Thiết bị
hoạt động hiệu quả, phù hợp với khả năng gia công chế tạo ở trong
nước. Nguồn điện của thiết bị phát ra ở 2 mức điện áp 12 VDC, 220
VAC tần số 50 Hz thực sine theo tiêu chuẩn điện lưới quốc gia Việt
Nam. Thiết bị có khả năng ứng dụng trong việc làm phao báo dẫn
đường biển hay làm nguồn cấp điện cho các đèn hải đăng.
Kết luận chương 1
Chương 1 đã trình bày tổng quan về các mô hình thiết bị phát
điện từ năng lượng sóng biển trên thế giới, đặc biệt các mô hình thiết
bị gắn cố định ở đáy biển và hoạt động theo phương thẳng đứng. Đã
chỉ ra các đơn vị trong nước đã, đang tiến hành nghiên cứu chế tạo
về thiết bị phát điện từ năng lượng sóng biển với các phân tích chi
tiết cho từng loại mô hình thiết bị. Đã thu thập và phân tích về đặc
trưng năng lượng sóng biển Việt Nam, với các số liệu về thông lượng
năng lượng sóng, độ cao sóng và chu kỳ sóng biển dọc theo bờ biển
trải dài trên 3260 km.
Đã chỉ ra nhu cầu và khả năng ứng dụng của mô hình thiết bị tại
Việt Nam. Đưa ra cấu trúc mô hình thiết bị phát điện từ năng lượng
sóng biển và định hướng nội dung nghiên cứu của luận án, thiết bị
hoạt động hiệu quả và phù hợp với điều kiện thực tế biển Việt Nam.
7
CHƯƠNG 2. XÂY DỰNG MÔ HÌNH CƠ HỌC VÀ TỐI ƯU
HÓA THIẾT BỊ PHÁT ĐIỆN TỪ NĂNG LƯỢNG SÓNG BIỂN
2.1. Xây dựng mô hình thiết bị phát điện từ năng lượng sóng
biển
Mô hình cơ học của thiết bị phát điện từ năng lượng sóng biển
được thiết lập để tính toán, xác định tối ưu các thông số mô hình và
mức công suất của thiết bị khi hoạt động. Mặt khác, từ đặc trưng hoạt
động của các mô tơ phát điện thường làm việc hiệu quả ở tốc độ
chuyển động quay lớn, để điện năng thiết bị phát ra đạt lớn nhất trong
mô hình thiết bị cần tính toán tăng tốc chuyển động quay, từ chuyển
động quay chậm nhận được do sóng biển truyền đến lên chuyển động
quay nhanh tại mô tơ phát điện với hiệu suất chuyển đổi đạt lớn nhất.
Hình 2.1 đưa ra sơ đồ nguyên lý với các cơ cấu bộ phận chính và mô
hình cơ học của thiết bị phát điện từ năng lượng sóng biển.
a. Sơ đồ nguyên lý mô hình thiết bị [33]
Hình 2.1. Cấu trúc mô hình thiết bị phát điện từ năng lượng sóng biển
b. Mô hình cơ học
thiết bị [33,42,43]
γ k
zS(t)
z(t)
m
8
Thiết lập phương trình chuyển động:
Phương trình chuyển động của mô hình được thiết lập quy về
một vật là phao dạng trụ tròn được ghép nối gắn chặt với thanh răng
- piston, chuyển động lên xuống theo phương thẳng đứng z. Gốc tọa
độ được lấy ở đáy biển với hướng dương là hướng từ dưới lên. Mặt
khác, hệ số cản γ được xác định: γ = γf + γem, theo các tài liệu đã công
bố về độ cản nhớt của nước biển [44,45], tác giả nhận thấy hệ số cản
nhớt γf của nước biển sẽ là rất nhỏ so với hệ số cản điện γem của mô
tơ phát điện nên được bỏ qua. Do vậy, phương trình chuyển động của
mô hình thiết bị được viết dưới dạng:
.)()()(
3
002
2
zzkzzk
dt
dz
mgzzgS
dt
zd
m NLemsb
(2.7)
Công suất trung bình cơ hệ Pgm của thiết bị nhận được từ năng
lượng sóng biển tại thanh răng - piston được xác định từ công thức
[15,20,38-41]:
,)(
1
0
2
dttzP
emgm
(2.8)
với τ là khoảng thời gian được xét.
2.2. Khảo sát dao động của hệ trong trường hợp phi tuyến
Để đánh giá sự ổn định của mô hình khi hoạt động trong các
vùng biển có biên độ sóng lớn, tác giả khảo sát về đặc trưng biên độ -
tần số của hệ trong trường hợp cộng hưởng [46-49].
Từ phương trình chuyển động (2.7), thực hiện phép đổi biến
,0 xzz phương trình (2.7) được viết lại dưới dạng:
.)(
3
02
2
xkxk
dt
dx
mgxzzgS
dt
xd
m NLemsb (2.22)
9
Sử dụng các ký hiệu c,,2 và B, xét trường hợp gần cộng
hưởng ,22 thực hiện biến đổi ta nhận được:
),,,(
2
2
2
txxfx
dt
xd (2.25)
với ký hiệu: .)cos(),,( 3 gtBxx
dt
dx
ctxxf
Sử dụng phép biến đổi: .)cos(
0
xtax (2.26)
Từ các đặc trưng của mô hình, trong luận án giả thiết hệ là phi
tuyến yếu. Áp dụng phương pháp trung bình hóa của cơ học phi
tuyến, xét tại 0a và ,0 thực hiện tính toán ta nhận được công
thức liên hệ giữa biên độ và tần số có dạng:
.3
4
3 22
2
0
2
2
0
2
0
22 c
a
B
xa (2.39)
Hình 2.2 đưa ra các đồ thị biểu diễn hàm biên độ a0 theo tần số
Ω2 với các hệ số được lấy như sau: m = 25 kg; a = 0.35 m; g = 9,81
m/s2; x0 = 0,4 m; kL = 1900 N/m và kN = 700 N/m3, ở các trường hợp
hệ số cản γem khác nhau tại sóng biển có biên độ 0,5 m. Kết quả nhận
được cho thấy, trong trường hợp đồ thị đường cong biên độ - tần số
với hệ số γem = 40, hệ dao động ổn định trong vùng tần số từ điểm (1)
đến điểm (2) và từ điểm (5) đến điểm (6). Trong vùng tần số đi từ
điểm (2) đến điểm (3) và giảm từ điểm (5) về điểm (4), hệ dao động
có nhảy mức với biên độ dao động không ổn định, đây là vùng nguy
hiểm cần tránh khi tính toán chế tạo thiết bị hoạt động. Mặt khác, nếu
có đủ số liệu về điều kiện sóng biển thực tế tại các vùng biển có biên
độ sóng lớn, ta có thể khai thác thiết bị hoạt động ở vùng tần số ổn
định gần điểm (2) để biên độ dao động của hệ nhận được là lớn nhất.
10
Hình 2.2. Đồ thị đường cong cộng hưởng biên độ theo tần số Ω2
2.3. Tối ưu hóa mô hình thiết bị phát điện từ năng lượng sóng
biển
Từ định hướng nghiên cứu, nhằm chế tạo được một thiết bị phát
điện hoạt động ở ven bờ. Với giả thiết ở sóng biển có độ cao dưới 1
m, ảnh hưởng của thành phần phi tuyến trong mô hình là không đáng
kể. Các thông số mô hình được xác định theo bài toán tuyến tính,
phương trình (2.7) được xét với kN = 0 và thực hiện đổi biến
.0 xzz Xét hàm sóng biển tác dụng lên mô hình dưới dạng sóng
tuyến tính chuyển động theo phương thẳng đứng z có dạng:
.)sin( 0ztAzs (2.41)
Phương trình chuyển động của hệ nhận được có dạng:
).sin(2
2
t
m
AgS
gx
m
kgS
dt
dx
mdt
xd bLbem
(2.42)
Nghiệm của phương trình (2.42) tìm được như sau:
),sin(
t
gSk
mg
x
bL
(2.53)
11
với χ là biên độ dao động của hệ đã nhận được là:
.
2222
embL
b
gSkm
AgS
Công suất cơ hệ Pgm của thiết bị có dạng:
.
)(
2
1
2222
2
embL
bem
gm
mgSk
AgS
P
(2.56)
Lực đàn hồi lớn nhất của lò xo: FL_max = kLHmax. (2.57)
Lực Acsimet cực đại của phao: FAcs_max = ρgπa2h. (2.58)
Mô hình thiết bị được nghiên cứu chế tạo với lựa chọn khu vực
biển Hòn Dấu - Hải Phòng để khai thác thử nghiệm. Tại biển Hòn
Dấu, các điều kiện sóng biển có chu kỳ thay đổi trong khoảng
3,5÷4,5 giây và độ cao sóng từ 0,5÷1,4 m [36], do vậy vận tốc
chuyển động theo phương thẳng đứng đạt từ 0,29÷0,62 m/s. Trong
luận án, mô hình được xác định với mức công suất cơ hệ Pgm của
thiết bị nhỏ nhất cần đạt 270 W, phạm vi dao động của hệ là 0,45 m.
Từ các biểu thức (2.57), (2.58) kết hợp các số liệu sóng biển tại biển
Hòn Dấu, các thông số mô hình được xác định kL = 2100 N/m với
phao thiết bị dạng trụ tròn chiều cao 0,42 m và bán kính 0,4 m.
Hình 2.4 đưa ra các đồ thị về mức công suất cơ hệ Pgm của thiết
bị theo hệ số cản γem tại các chu kỳ sóng biển T1 =3,5 giây, T2 =4,0
giây, T3 =4,26 giây và T4 =4,5 giây ở sóng biển có biên độ 0,5 m. Từ
các kết quả nhận được, trong luận án mô tơ phát điện được chọn có
hệ số cản là 3400 Ns/m tương ứng mức công suất cơ hệ đạt lớn nhất.
Với giá trị hệ số cản nhận được là cơ sở lựa chọn loại mô tơ phát
điện phù hợp để sử dụng trong thiết bị phát điện nghiên cứu chế tạo.
12
Khảo sát công suất cơ hệ theo kích thước phao:
Trong tính toán khảo sát, phao thiết bị có dạng trụ tròn bán kính
thay đổi từ 0,35÷0,55 m. Kết quả tính toán đưa ra bức tranh toàn diện
về mức công suất cơ hệ Pgm thiết bị nhận được từ năng lượng sóng
biển. Trong hình 2.8 là đồ thị công suất cơ hệ của thiết bị nhận được
từ năng lượng sóng biển theo bán kính phao tại các chu kỳ sóng biển.
2.4. Xây dựng chương trình mô phỏng số và khảo sát sự hoạt
động của thiết bị chuyển đổi từ năng lượng sóng biển sang năng
lượng cơ học
Xây dựng chương trình tính toán mô phỏng số:
Phương trình chuyển động (2.7) được giải bằng phương pháp
Runge – Kutta bậc 4, áp dụng phương pháp Simpson tính tích phân
số xác định mức công suất cơ hệ của thiết bị. Chương trình tính toán
mô phỏng số được lập trình trên phần mềm Matlab, để khảo sát sự
hoạt động của thiết bị với ảnh hưởng phi tuyến của lò xo khi thiết bị
hoạt động ở sóng biển có độ cao từ 1 m trở lên.
Lưu đồ thuật toán thực hiện tính toán mô phỏng số:
Hình 2.8. Đồ thị công suất cơ
hệ theo bán kính phao
Hình 2.4. Đồ thị công suất cơ
hệ theo hệ số cản
13
Hình 2.9. Sơ đồ khối của chương trình
Chương trình mô phỏng số thực hiện tính toán mức công suất cơ
hệ Pgm, quỹ đạo chuyển động, phân tích đánh giá sự phi tuyến của
mô hình được xét ở các hệ số phi tuyến lò xo kN khác nhau, xác định
phạm vi dao động của mô hình theo các hàm sóng biển với sóng bậc
nhất tại biểu thức (2.41) và sóng bậc hai Stockes có dạng [38,51,52] :
.)2sin()]2cosh(2[
)(sinh4
)cosh(
)sin( 00
0
3
0
2
ztkz
kz
kzkA
tAzs (2.59)
Kết thúc
Tích phân (2.8) theo Simpson:
1
,...3,1
)(
2 ),(41
n
j
s
j pZQkq
2
,...4,2
)(
2 ),(22
n
j
s
j pZQkq
321
),)(2(),
)0(
2( t
kqkq
sp
nZQspZQ
gm
P
Đúng
Xuất kết quả
2
)(
2;1
)(
1 Z
j
ZZ
j
Z
ti:= ti+1
ti+1:= ti + Δt
6/)432221(
)()1( tkkkkiZiZ
Sai
ti+1≥ tmax
k4 = f(ti+Δt, Z(i) + Δtk3, ps)
k3 = f(ti+
2
t
, Z(i) +
2
t
k2, ps)
Tính toán:
k1 = f(ti, Zi, ps)
k2 = f(ti+
2
t
, Z(i) +
2
t
k1, ps)
Thông số đầu vào
t0, Z0, Δt, tmax, ps
Bắt đầu
14
Tính toán mô phỏng số sự hoạt động của thiết bị:
Từ các kết quả tính toán mô phỏng số đã chỉ ra sự hoạt động của
thiết bị phụ thuộc vào cả biên độ và tần số của sóng biển. Các kết
quả tính toán cho thấy chuyển động của phao trễ pha so với chuyển
động của sóng biển là 33,60 (hình 2.11). Hình 2.16 cho thấy quỹ đạo
pha của mô hình biến đổi phụ thuộc vào hai thành phần tần số ω, 2ω
và các biên độ sóng biển tương ứng. Đường cong quỹ