Dầu nặng có các đặc trưng chính sau :
- Độ nhớt: đây là đặc trưng chính của dầu thô, nó cho phép phân biệt
bitumen và dầu thô nặng (bitumen có độ nhớt cao hơn 10.000 cP);
- Khối lượng riêng: dầu thô nặng là loại d ầu thô có °API thấp hơn 20. Ở
Venezuela, dầu thô nặng được phân thành 2 loại: dầu nặng có °API từ 10-20 và dầu thô siêu nặng có API <10° (tỷ lệ C/H cao);
- Phần trăm các phân đoạn nhẹ: phần chưng cất thu được ở điểm cắt cuối
200°C thường chỉ chiếm khoảng 5%;
- Phần trăm Asphalten: rất cao, chiếm khoảng 15% đối với dầu thô
Venezuela;
- Hàm lượng lưu huỳnh: rất cao, thông thường khoảng 5% khối lượng;
Để có thể cải thiện các đặc tính trên của dầu nặng người ta đưa ra hai
phương pháp nâng cấp dầu: khử carbon (carbon rejection) và thêm hydro
(hydrogen addition) trong phân đoạn cặn nhằm tăng tỷ lệ H/C và giảm độ nhớt
cho dầu. Sơ đồ dưới đây thể hiện khá bao quát các công nghệ nâng cấp dầu
nặng, tuy nhiên trong báo cáo này, nhóm tác giả chỉ trình bày chi tiết m ột vài
công nghệ nâng cấp điển hình.
35 trang |
Chia sẻ: lvbuiluyen | Lượt xem: 2369 | Lượt tải: 4
Bạn đang xem trước 20 trang tài liệu Xúc tác trong quá trình chế biến dầu nặng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Trang 0/34
ĐẠI HỌC BÁCH KHOA TP.HCM
KHOA KỸ THUẬT HÓA HỌC
BỘ MÔN CÔNG NGHỆ CHẾ BIẾN DẦU KHÍ
Môn học: Xúc tác trong chế biến dầu
XÚC TÁC TRONG QUÁ TRÌNH CHẾ BIẾN
DẦU NẶNG
GVHD: TS. NGUYỄN HỮU LƯƠNG
HV: HOÀNG MẠNH HÙNG
MSHV: 10400156
TP.HCM, 2010
Trang 1/34
MỤC LỤC
I.TỔNG QUAN CÔNG NGHỆ NÂNG CẤP DẦU NẶNG ............................................. 2
I.1. Công nghệ làm giảm hàm lượng Cacbon ............................................ 5
I.1.1. Công nghệ tách Asphalten bằng dung môi .................................... 5
I.1.2. Công nghệ cốc hóa trễ – Foster Wheeler ....................................... 8
I.1.3. Công nghệ kết hợp cốc hóa trễ và tách Asphalten - ASCOT ....... 10
I.1.4. Công nghệ Visbreaking ............................................................... 11
I.1.5. Công nghệ khí hóa ...................................................................... 14
I.2. Công nghệ bổ xung hydro ................................................................. 15
I.2.1. Công nghệ LC-Fining (Chevron Lummus Global LLC.,) ............ 16
I.2.2. Công nghệ nâng cấp cặn nặng H-OilRC (Axens) ........................ 20
I.2.3. Công nghệ nâng cấp cặn nặng Hyvahl (Axens) ........................... 21
II. SO SÁNH CÁC CÔNG NGHỆ NÂNG CẤP DẦU NẶNG. ...................................... 24
III. XÚC TÁC QUÁ TRÌNH HYDROCRACKING NGUYÊN LIỆU NẶNG .................. 26
III.1. Tổng quan xúc tác của quá trình hydrocracking trong công nghiệp 26
III.2. Những cải tiến của xúc tác để phù hợp với nguyên liệu nặng ......... 27
III.2.1. Sử dụng phụ gia xúc tác ........................................................... 27
III.2.1.1. Ảnh hưởng của kim loại kiềm ............................................ 27
III.2.1.2. Ảnh hưởng của Phốt pho (P) .............................................. 27
III.2.1.3. Ảnh hưởng của Borate (B).................................................. 29
III.2.1.4. Ảnh hưởng của Flo (F) ....................................................... 30
III.2.2. Ảnh hưởng của chất mang ........................................................ 31
III.2.2.1. Chất mang axit ................................................................... 31
III.2.2.2. Chất mang chứa TiO2 ......................................................... 33
IV. KẾT LUẬN ................................................................................................ 33
Trang 2/34
I. Tổng Quan Công Nghệ Nâng Cấp Dầu Nặng
Dầu nặng có các đặc trưng chính sau :
- Độ nhớt: đây là đặc trưng chính của dầu thô, nó cho phép phân biệt
bitumen và dầu thô nặng (bitumen có độ nhớt cao hơn 10.000 cP);
- Khối lượng riêng: dầu thô nặng là loại dầu thô có °API thấp hơn 20. Ở
Venezuela, dầu thô nặng được phân thành 2 loại: dầu nặng có °API từ 10-
20 và dầu thô siêu nặng có API <10° (tỷ lệ C/H cao);
- Phần trăm các phân đoạn nhẹ: phần chưng cất thu được ở điểm cắt cuối
200°C thường chỉ chiếm khoảng 5%;
- Phần trăm Asphalten: rất cao, chiếm khoảng 15% đối với dầu thô
Venezuela;
- Hàm lượng lưu huỳnh: rất cao, thông thường khoảng 5% khối lượng;
Để có thể cải thiện các đặc tính trên của dầu nặng người ta đưa ra hai
phương pháp nâng cấp dầu: khử carbon (carbon rejection) và thêm hydro
(hydrogen addition) trong phân đoạn cặn nhằm tăng tỷ lệ H/C và giảm độ nhớt
cho dầu. Sơ đồ dưới đây thể hiện khá bao quát các công nghệ nâng cấp dầu
nặng, tuy nhiên trong báo cáo này, nhóm tác giả chỉ trình bày chi tiết một vài
công nghệ nâng cấp điển hình.
Thuộc nhóm công nghệ làm giảm Cacbon, chúng ta sẽ lần lượt xem xét các
công nghệ tách Asphalten bằng dung môi nặng, công nghệ cốc hóa trễ, công
nghệ kết hợp công nghệ cốc hóa và công nghệ tách Asphalten, công nghệ
Visbreaking, công nghệ khí hóa.
Thuộc nhóm công nghệ làm tăng Hydro, chúng ta sẽ xem xét công nghệ
chuyển hóa hydro cặn xúc tác cố định và công nghệ chuyển hóa hydro cặn xúc
tác chuyển động.
Công nghệ cracking xúc tác tầng sôi thuộc phương pháp làm giảm Cacbon.
Tuy nhiên, công nghệ này yêu cầu tính chất nguyên liệu khắt khe hơn công nghệ
chuyển hóa hydro nhằm ngăn chặn hiệu suất tạo cốc cao và sự đầu độc nhanh
xúc tác bởi các tạp chất lưu huỳnh, nitơ, kim loại nặng. Do đó công nghệ này chỉ
có thể xử lý cặn khí quyển có hàm lượng kim loại nặng, lưu huỳnh, nitơ tương
đối thấp. Các Syncrude được lựa chọn xem xét có hàm lượng tạp chất trong
phân đoạn cặn quá cao so với yêu cầu nguyên liệu của công nghệ cracking xúc
tác.
Trong công nghệ cốc hóa tầng sôi và công nghệ cốc hóa linh động, cốc
tuần hoàn mang nhiệt từ lò đốt quay trở lại thiết bị phản ứng, tại đây, những rây
cốc đóng vai trò làm tâm phản ứng thực hiện quá trình bẻ gãy cặn tạo thành
những sản phẩm nhẹ hơn. Công nghệ cốc hóa tầng sôi có hiệu suất sản phẩm cất
Trang 3/34
cao hơn tuy nhiên chất lượng thấp hơn so với công nghệ cốc hóa trễ. Công nghệ
cốc hóa linh động là công nghệ mở rộng của công nghệ cốc hóa tầng sôi, có cụm
khí hóa cốc dư trong dây chuyền để tạo ra khí tổng hợp.
Trang 4/34
Hình 1:Tổng quan công nghệ chuyển hóa cặn nặng
Công nghệ nâng
cấp cặn nặng
Công nghệ làm
giảm cacbon
Công nghệ làm
tăng hydro
Công nghệ sử dụng xúc
tác
Công nghệ không sử
dụng xúc tác
Công nghệ xúc tác
cố định
Công nghệ xúc tác
tầng sôi
RDS/VRDS
Hyvahl
Unicracking
H-Oil
LC-Fining
Tách Asphant
bằng dung môi
Cốc hóa chậm
Cốc hóa tầng sôi
Flexicoking
Visbreaking
RFCC
Trang 5/34
I.1. Công nghệ làm giảm hàm lượng Cacbon
I.1.1. Công nghệ tách Asphalten bằng dung môi
Công nghệ tách Asphalten bằng dung môi đóng một vai trò quan trọng
trong NMLD bởi vì công nghệ này có thể được sử dụng để nâng cấp cặn nặng
hoặc chế tạo dầu gốc trong qui trình sản xuất dầu nhờn. Hơn thế nữa, công nghệ
này có chi phi đầu tư xây dựng và chi phí vận hành thấp hơn so với các công
nghệ nâng cấp cặn nặng khác. Trên thế giới hiện nay có 50 dây chuyền hoạt
động theo công nghệ này với tổng công suất là 500.000 BPSD.
Công nghệ này dựa trên khả năng của những hydrocacbon parafin nhẹ có
thể tách những cấu tử Asphalten nặng nhất trong nguyên liệu cặn chân không.
Dầu được tách bỏ Asphalten với hàm lượng tạp chất thấp được sử dụng làm
nguyên liệu cho nhiều quá trình trong NMLD, đặc biệt là nguồn nguyên liệu bổ
xung cho quá trình cracking xúc tác và hydrocracking nhằm tạo ra nhiều sản
phẩm nhiên liệu. Hắc ín từ quá trình tách Asphalten bằng dung môi chứa hầu hết
những tạp chất có mặt trong dầu thô, có độ nhớt cao, do đó có giá trị kinh tế
thấp. Dung môi propane thường được sử dụng khi sản xuất dầu nhờn với hiệu
suất DO thấp, trong khi dung môi nặng hơn tại điều kiện vận hành phù hợp sẽ
tăng tối đa hiệu suất DO, đồng thời giảm thiểu hiệu suất hắc ín.
Những kinh nghiệm trong công nghệ SDA của UOP chủ yếu tập trung vào
việc sử dụng butane và dung môi nặng hơn nhằm thu được hiệu suất DO cao
hơn. Một ưu điểm nổi bật của công nghệ này là khả năng phân tách tốt giữa
dung môi và DO khi thực hiện quá trình thu hồi dung môi. UOP cũng đã nghiên
cứu những biện pháp để tối thiểu hóa tỉ lệ dung môi/nguyên liệu nhưng vẫn tạo
ra DAO có chất lượng cao.
Công nghệ SDA của Foster Wheeler tập trung vào việc nâng cao chất
lượng DAO như sản xuất dầu nhờn hoặc nguyên liệu cho quá trình
hydrocracking, và áp dụng những kỹ thuật tối ưu trong quá trình trích ly.
Trang 6/34
Hình 2: Sơ đồ công nghệ tách Asphalten bằng dung môi – UOP/FW
Nguyên liệu và dung môi parafin được trộn lẫn, sau đó được đưa vào tháp
trích ly. Trong tháp trích ly, dòng nguyên liệu chảy từ trên xuống sẽ tiếp xúc với
dòng dung môi chuyển động từ dưới lên. DO và nhựa được thu hồi chọn lọc ở
trên đỉnh tháp trích ly cùng với một phần lớn dung môi, trong khi Asphalten và
nhựa phân cực có lẫn một ít dung môi sẽ nhận được tại đáy tháp trích ly. Hỗn
hợp DAO và dung môi thu được ở đỉnh tháp đi đến thiết bị phân tách, nhiệt độ
hỗn hợp sẽ được tăng trên mức điều kiện tới hạn của dung môi. Tại điều kiện
này DAO không còn có khả năng hòa tan trong dung môi và tách khỏi dung môi
nhờ tỷ trọng. Dòng hắc ín chứa một ít dung môi, tiếp tục được đưa đến công
đoạn thu hồi hắc ín, tại đây hỗn hợp được gia nhiệt, bay hơi, và chưng cất bằng
hơi nước. Dòng dung môi nhận được từ hệ thống thu hồi DAO và hắc ín được
làm lạnh và ngưng tụ, sau đó tuần hoàn lại tháp trích ly để tái sử dụng.
- Sự kết hợp giữa UOP và Foster Wheeler sẽ tạo ra những ưu điểm nổi bật
cho công nghệ :
Thiết bị tiếp xúc nhiều lần dạng đĩa xoay kết hợp chưng cất sơ
bộ và tinh cất nguyên liệu dầu, và thiết bị phân tách áp dụng
những công nghệ hiện đại làm tối đa hóa hiệu suất của quá trình
trích ly đồng thời tối ưu hóa hiệu suất thu hồi sản phẩm sạch.
Trang 7/34
Khả năng thu hồi dung môi tốt cho phép sử dụng hiệu quả
những đặc tính nhiệt động của quá trình, đồng thời giảm chi phí
vận hành của dây chuyền.
Với công nghệ trích ly hiệu quả cao, tỉ lệ dung môi đối với
nguyên liệu có thể giảm xuống đến mức thấp nhất. Thông số
này sẽ tác động đến chi phí đầu tư và chi phí hoạt động của dây
chuyền.
Nguồn: Refining Process 2006
Hình 3:Ảnh hưởng của tỉ lệ dung môi/nguyên liệu đến hiệu suất và chất
lượng của DAO
- Điều kiện vận hành của quá trình.
Dung môi : hỗn hợp hydrocacbon C3 – C7
Áp suất, psig : 300 – 600
Nhiệt độ, oF : 120 – 450
Tỷ lệ dung môi/nguyên liệu: 4/1 – 13
Bảng 1: Tính chất và hiệu suất DAO từ một nguyên liệu xác định
Nguyên liệu
oAPI 6,5
Sulfur, %kl 3,0
CCR, % kl 21,8
Ni/V, wppm 46/125
DAO
Hiệu suất, %V của nguyên liệu 65
oAPI 15,1
Sulfur, %kl 2,2
CCR, %kl 6,2
Độ nhớt, SSU@210oF 540
( theo Refining Processing 2006)
Trang 8/34
I.1.2. Công nghệ cốc hóa trễ – Foster Wheeler
Foster Wheeler là nhà cung cấp hàng đầu về công nghệ cốc hóa trễ, công
nghệ có tên là SYDECSM. Tính đến thời điểm năm 2006, có 52 dây chuyền cốc
hóa trễ áp dụng công nghệ SYNDECSM được lắp đặt khắp nơi trên thế giới, với
tổng công suất là 2,5 triệu BPSD.
Thiết kế dây chuyền cốc hóa trễ theo công nghệ SYDECSM được dựa trên
thiết bị cốc hóa có hiệu suất sản phẩm lỏng cao, làm giảm áp suất của quá trình
và giảm tỉ lệ tuần hoàn khi vận hành, đồng thời tạo ra gas oil nặng có hàm lượng
kim loại nặng và chỉ số Cacbon Conradson thấp.
Hiệu suất các sản phẩm trong quá trình cốc hóa có thể thay đổi nhằm đáp
ứng mục tiêu của NMLD bằng cách thay đổi thông số công nghệ. Tăng nhiệt độ
buồng cốc sẽ làm giảm hiệu suất cốc, làm tăng hiệu suất sản phẩm cất. Tăng áp
suất hoặc tăng lượng tuần hoàn dẫn đến tăng hiệu suất cốc, nhưng hiệu suất sản
phẩm cất cũng giảm xuống. Nếu vận hành quá trình cốc hóa trễ không có dòng
tuần hoàn, thì hiệu suất cốc thấp hơn và hiệu suất sản phẩm cất cao hơn, tuy
nhiên sản phẩm cất sẽ có nhiều tạp chất.
Nguồn: HydrocarbonProcessing, September 2003
Hình 4: Thiết kế công nghệ với tỉ lệ tuần hoàn thấp và không tuần hoàn
Bảng dưới đây sẽ cho một sự so sánh về hiệu suất và chất lượng của
gasoil nặng của các quá trình cốc hóa truyền thống và công nghệ SYNDECSM có
tỷ lệ tuần hoàn thấp và SYNDECSM không có tuần hoàn.
Bảng 2: So sánh hiệu suất và chất lượng Gas oil nặng của các phương án
công nghệ cốc hóa trễ
Gas oil nặng Công nghệ cũ SYNDECSM,
tuần hoàn thấp
SYNDECSM,
không tuần hoàn
Hiệu suất, %kl 24,4 37,9 41,8
Điểm sôi cuối,oF 920 1.060 1.110
Trang 9/34
oAPI 18,4 15,6 14,7
CCR, %kl 0,25 0,6 1,2
Ni + V, ppm 0,5 0,8 1,8
Nguồn: Refining Process 2006
Hình 5: Công nghệ cốc hóa trễ - SYNDECSM
Nguyên liệu cặn chân không được gia nhiệt sơ bộ bằng cách trao đổi nhiệt
với dòng gas oil trước khi đưa vào phần dâng lên của tháp chưng cất. Tại đáy
tháp, nguyên liệu mới trộn với dòng tuần hoàn ngưng tụ được bơm qua lò cấp
nhiệt, tại đây nhiệt độ của nguyên liệu tăng nhanh đến nhiệt độ cần thiết cho sự
tạo thành cốc trong buồng cốc hóa. Hơi nước thường được phun vào mỗi ống
xoắn của lò nhiệt để duy trì duy trì tốc độ và thời gian lưu phù hợp nhằm tránh
sự tạo cốc trong các ống của lò nhiệt.
Hỗn hợp lỏng hơi đi ra khỏi lò đốt đi vào buồng cốc hóa, dòng
hydrocacbon lỏng bị giữ lại và chuyển hóa thành cốc và hơi hydrocacbon nhẹ.
Toàn bộ hơi sẽ đi lên đỉnh buồng cốc.
Dây chuyền cần có ít nhất hai buồng cốc hóa để thực hiện quá trình cốc
hóa. Một buồng nhận dòng ra của lò đốt để chuyển hóa thành cốc và khí, một
buồng đang trong quá trình tháo cốc.
Hơi hydrocacbon từ đỉnh buồng cốc đi vào dưới vùng shed của tháp chưng
cất, và được hạ nhiệt bởi dòng gas oil tuần hoàn tưới trên vùng shed. Chế độ vận
hành này sẽ làm sạch và làm lạnh hơi sản phẩm đi ra khỏi tháp chưng cất và
đồng thời ngưng tụ phần nặng hơn tạo thành dòng tuần hoàn. Dòng tuần hoàn
cùng với nguyên liệu mới, được bơm từ tháp chưng cất đến lò cấp nhiệt. Dòng
Trang 10/34
gas oil nặng tuần hoàn, đi ra từ bên tháp chưng cất được sử dụng để loại bỏ nhiệt
khỏi tháp, ngưng tụ một phần lớn gas oil nặng và làm lạnh phần hơi bị cuốn
theo. Sản phẩm gas oil nặng được làm lạnh nhờ trao đổi nhiệt với dòng nguyên
liệu và không khí đến nhiệt độ của kho chứa.
Hơi đi ra đỉnh tháp chưng cất được ngưng tụ trong thiết bị ngưng tụ, sau
đó được đưa vào thùng chứa, tại đây, hơi sẽ được tách ra khỏi lỏng. Một phần
chất lỏng sẽ quay trở lại tưới lên đỉnh tháp, phần còn lại cùng với hơi nén được
chuyển tới dây chuyền thu hồi hơi.
- Thông số vận hành
Nhiệt độ đầu ra của lò cấp nhiệt, oF : 900 – 950;
Áp suất buồng cốc hóa, psig : 15 – 100;
Tỉ lệ tuần hoàn, so với nguyên liệu : 0 – 1,0;
- Hiệu suất
Bảng 3: Hiệu suất sản phẩm của quá trình cốc hóa trễ cho từng chế độ vận
hành
Hiệu suất sản phẩm Max distillate Anode Coke Needle Coke
Khí, %kl 8,7 8,4 9,8
Naphtha, %kl 14,0 21,6 8,4
Gas oil, %kl 48,3 43,8 41,6
Coke, %kl 29,3 26,2 40,2
Nguồn: Refining Process 2006
I.1.3. Công nghệ kết hợp cốc hóa trễ và tách Asphalten - ASCOT
ASCOT là sự kết hợp giữa 2 công nghệ SYDECSM và LEDA (Low Energy
DeAsphaltening) của Foster Wheeler.
Quá trình áp dụng công nghệ này có hiệu suất sản phẩm lỏng cao với hàm
lượng S, N, kim loại và cặn cacbon conradson thấp hơn so với quá trình SDA.
Loại bỏ triệt để Asphalten, đồng thời cho hiệu suất sản phẩm khí và cốc thấp
hơn, cốc có hàm lượng S, N và kim loại cao so với quá trình cốc hóa trễ.
Trang 11/34
Hình 6: Sơ đồ công nghệ ASCOT
Chi phí đầu tư và chi phí vận hành thấp hơn so với hai quá trình riêng biệt
do có thể tận dụng nguồn nhiệt từ quá trình cốc hóa cho quá trình SDA.
Nguyên liệu được gia nhiệt đến nhiệt độ thích hợp rồi đưa đến thiết bị trích
ly. Trong thiết bị trích ly, dòng dung môi (Naphtha) chảy từ dưới lên, hòa tan
các hydrocacbon giàu parafin.
Dòng DAO rời khỏi đỉnh của thiết bị trích ly và đi qua hệ thống thu hồi
dung môi. Dung môi thu hồi được hoàn lưu lại thiết bị trích ly. Sản phẩm DAO
sau khi tách dung môi được đưa đến tháp chưng cất của cụm cốc hóa trễ.
Dòng Asphalten có lẫn dung môi được gia nhiệt rồi đưa vào buồng tạo cốc.
Sản phẩm khí từ buồng tạo cốc được đưa đến tháp chưng cất.
Tại tháp chưng cất, dòng sản phẩm đỉnh có chứa dung môi và các
hydocacbon nhẹ được ngưng tụ và thu hồi. Dòng dầu nặng được đưa đến thiết bị
tách để tách các hydrocacbon nhẹ hoàn lưu trở lại thiết bị phân đoạn, còn dòng
sản phẩm đáy dùng để cấp nhiệt cho thiết bị ổn định. Dòng sản phẩm đáy của
tháp chưng cất có thể hồi lưu, nhập chung với dòng nguyên liệu.
I.1.4. Công nghệ Visbreaking
Visbreaking là một quá trình chuyển hóa nhiệt nhằm biến đổi cặn chân
không hoặc cặn khí quyển thành khí, Naphtha, phần cất, và nhựa đường. Quá
trình chuyển hóa cặn được thực hiện thông qua việc gia nhiệt cặn trong lò đốt
đến nhiệt độ cao. Dòng nguyên liệu đi qua vùng phản ứng được bố trí ở trong lò
gia nhiệt hoặc trong một buồng phản ứng được đặt ở bên ngoài tại những điều
kiện nhiệt độ và áp suất phù hợp. Dòng sản phẩm đi ra sẽ được hạ nhiệt để
ngưng tất cả các phản ứng.
Trang 12/34
Visbreaking là một lựa chọn để nâng cấp cặn nặng có chi phí đầu tư thấp,
tạo ra dòng sản phẩm nhiều khí và phần cất hơn so với nguyên liệu ban đầu,
đồng thời làm giảm độ nhớt của phân đoạn FO.
Khi một dây chuyền Visbreaking được xem xét để nâng cấp cặn nặng,
những mục tiêu dưới đây thường được hướng tới :
- Làm giảm độ nhớt dòng nguyên liệu cặn sẽ kéo theo sự giảm lượng
sản phẩm cất cần thiết để sản xuất FO đáp ứng được những tiêu
chuẩn kỹ thuật về độ nhớt.
- Sự chuyển hóa một phần nguyên liệu cặn thành những sản phẩm cất,
đặc biệt là nguyên liệu cho quá trình cracking xúc tác, để đạt được
mục tiêu này cần phải vận hành một tháp bay hơi chân không nhằm
tạo ra phân đoạn gas oil chân không.
- Giảm sản lượng FO, đồng thời giảm độ chua và độ nhớt. Để đạt
được mục tiêu này cần phải có một thiết bị cracking nhiệt ngoài lò
gia nhiệt của Visbreaker.
- Những mục tiêu lọc dầu phải được xác định trước khi tích hợp quá
trình visbreaking vào NMLD vì toàn bộ dây chuyền xử lý có thể
thay đổi, ảnh hưởng đến hiệu quả kinh tế của dự án.
Hai quá trình Visbreaking phổ biến hiện nay là quá trình Visbeaking loại
ống xoắn (coil) hay còn gọi là loại lò đốt được cấp bản quyền bởi UOP và Foster
Wheeler và quá trình Visbreaking buồng phản ứng (soaker) được cấp bản quyền
bởi Shell.
Nguyên liệu cho quá trình Visbreaking thường là cặn chân không hoặc cặn
khí quyển. Nguyên liệu cặn sẽ được chuyển hóa thành khí, xăng và gas oil với
hiệu suất 10 – 50% cho mỗi sản phẩm, tùy thuộc vào độ khắt khe của quá trình
và đặc tính của dòng nguyên liệu. Độ chuyển hóa của cặn thành Naphtha hoặc
những sản phẩm nhẹ hơn sẽ được coi là số đo về độ khe khắt trong vận hành của
quá trình Visbreaking. Mức độ chuyển hóa bị hạn chế bởi một số đặc tính của
nguyên liệu như hàm lượng Asphalten, Natri, và chỉ số CCR. Một nguyên liệu
có hàm lượng Asphalten cao sẽ dẫn đến độ chuyển hóa thấp hơn so với nguyên
liệu có hàm lượng Asphalten thấp hơn với điều kiện đảm bảo sản lượng FO đi ra
từ đáy Visbreaker. Chỉ số CCR và hàm lượng Natri trong nguyên liệu càng cao
thì khả năng tạo thành cốc trong ống trong lò cấp nhiệt càng lớn, do đó chu trình
làm việc của dây chuyền sẽ giảm xuống.
Theo thực nghiệm, với một nguyên liệu được chọn trước, khi độ khe khắt
tăng thì độ nhớt của sản phẩm nhựa đường (điểm cắt từ 204oC) sẽ giảm, sau đó
nếu tiếp tục tăng độ khe khắt của quá trình thì độ nhớt của nhựa đường tăng lên
rõ rệt, điều này báo hiệu đã có sự tạo thành những tiền chất cốc. Những dữ liệu
Trang 13/34
thu được từ những thực nghiệm sẽ được thiết lập quan hệ tương quan. Điểm đảo
ngược độ nhớt có thể phỏng đoán nhờ tương quan này và được sử dụng để quyết
định thông số thiết kế đối với từng loại nguyên liệu nhằm tránh sự tạo thành FO
không ổn định trong khi tăng độ chuyển hóa.
Những nguyên liệu cặn có điểm hóa mềm thấp và khả năng hòa tan n-
pentan thấp sẽ chứa một lượng đáng kể phần cất nặng và dầu không chứa
Asphalten. Những dầu nặng này sẽ bị bẻ gãy thành những dầu có độ nhớt thấp
hơn, nhiệt độ sôi thấp hơn dẫn đến sự giảm độ nhớt toàn bộ.
Nếu những thông số công nghệ không được xác định chính xác, thì sản
phẩm FO của quá trình xuất hiện tượng phân tách pha. Tính ổn định của FO sẽ
giảm khi độ chuyển hóa vượt qua một ngưỡng xác định (điểm đảo ngược độ
nhớt). Hàm lượng sulfur trong cặn FO của quá trình Visbreaking khoảng 0.5%,
lớn hơn hàm lượng sulfur trong nguyên liệu. do đó sản phẩm FO từ quá trình
Visbreaking khó đạt được tiêu chuẩn kỹ thuật hàm lượng sulfur trong nhiên liệu,
ngoại trừ FO tiếp tục được xử lý hydro.
Hình 7: Công nghệ Visbreaking – Foster Wheeler & UOP
Trong quá trình vận hành, nguyên liệu sẽ được đưa đến lò cấp nhiệt (1). Tại
đây, nhiệt độ của dòng nguyên liệu tăng cao, dẫn đến sự bay hơi và cracking một
phần nguyên liệu. Hơi nước sẽ được phun vào các ống xoắn của lò nhằm duy trì
tốc độ và thời gian lưu phù hợp, đồng thời n