Công nghệ ứng dụng hệ thống định vị toàn cầu GPS

Hệ thống GPS là một hệ thống định vị vệ tinh tiếp theo sau hệ thống DOPPLER. GPS là từ viết tắt của GLOBAL POSITIONING SYSTEM. Hệ thống này bắt đầu được nghiên cứu từ những năm 70 do quân đội Mỹ chủ trì. Trong những năm đầu của thập kỷ 80 quân đội Mỹ đã chính thức cho phép dùng trong dân sự. Từ đó các nhà khoa học của nhiều nước phát triển đã lao vào cuộc chạy đua để đạt được những thành quả cao nhất trong lĩnh vực sử dụng hệ thống vệ tinh chuyên dụng GPS. Những thành tựu này cho kết quả trong hai hướng chủ đạo là chế tạo các máy thu tín hiệu và thiết lập các phần mềm để chế biến tín hiệu cho các mục đích khác nhau. Cho tới năm 1988, các máy thu GPS do 10 hãng trên thế giới sản xuất đã đạt được trình độ cạnh tranh trên thị trường. Vì lý do trên, giá máy đã giảm xuống tới mức hợp lý mang tính phổ cập. Mười hãng trên thế giới sản xuất máy thu GPS bao gồm các hãng chính như: TRIMBLE NAVIGATION (Mỹ), ASHTECH (Mỹ), WILD (Thụy sĩ), SEGSEL (Pháp), MINI MAX (Tây Đức). Theo dư luận thị trường hiện nay máy thu của hãng TRIMBLE NAVIGATION đang được đánh giá cao nhất. Về phương diện phần mềm của hệ thống GPS, chúng ta sẽ thấy tính đa dạng hơn của nó. Trị đo thu được chỉ có một loại, đó là tín hiệu vệ tinh phát ra. Chế biến các tín hiệu này bằng các phương pháp khác nhau, thuật toán khác nhau chúng ta có được các tham số hình học và vật lý khác nhau của trái đất. Chúng ta có thể nói khả năng phần mềm là vô tận. Với các tín hiệu thu được chúng ta có thể tính được tọa độ không gian tuyệt đối (với độ chính xác 10 m và có thể tới 1 m nếu sử dụng lịch vệ tinh chính xác), số gia tọa độ không gian (độ chính xác từ 1 cm tới 5 cm), số gia tọa độ địa lý (độ chính xác từ 0.7 đến 4 cm), số gia độ cao (độ chính xác từ 0.4 cm đến 2 cm), và số gia trọng lực (độ chính xác 0.2 mgl). Ngoài ra còn có thể có những tham số khác đang được nghiên cứu. Toàn bộ phần cứng của hệ thống GPS có tên đầy đủ là NAVSTAR GPS SYSTEM. NAVSTAR viết tắt chữ NAVIGATION SYSTEM WITH TIME AND RANGING. Phần cứng này gồm 3 phần: phần điều khiển (Control Segment), phần không gian (Space Segment) và phần sử dụng (User Segment).

doc31 trang | Chia sẻ: lvbuiluyen | Lượt xem: 4339 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Công nghệ ứng dụng hệ thống định vị toàn cầu GPS, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC MỤC LỤC 1 MỞ ĐẦU 3 CHƯƠNG I: GIỚI THIỆU HỆ THỐNG ĐỊNH VỊ TOÀN CẦU GPS 4 I.1 GIỚI THIỆU CHUNG: 4 I.1.1 Phần điều khiển (Control Segment): 4 I.1.2. Phần không gian (Space Segment): 4 I.1.2.1 Chòm vệ tinh GPS: 4 I.1.2.2 Cấu trúc tín hiệu GPS 4 I.1.3. Phần sử dụng (User Segment): 5 I.1.3.1 Các bộ phận của một thiết bị GPS trong phần sử dụng. 5 I.1.3.2 Những bộ phận chính của máy thu GPS. 5 I.2 NGUYÊN LÝ HOẠT ĐỘNG CỦA HỆ THỐNG GPS: 6 I.3 CÁC PHƯƠNG PHÁP ĐỊNH VỊ BẰNG HỆ THỐNG GPS 7 I.3.1 Phép định vị tĩnh và định vị động. 7 I.3.2 Phép định vị tương đối. 7 I.3.3 Phép định vị nhiều máy thu. 8 I.3.4 Phép định vị động tương đối 8 I.3.5 Cấu hình hình học GPS và độ chính xác. 8 I.3.6 Độ suy giảm chính xác. 9 I.4. CÁC NGUỒN SAI SỐ TRONG KẾT QUẢ ĐO GPS 9 I.4.1 Sai số do đồng hồ. 9 I.4.2 Sai số do quĩ đạo vệ tinh 9 I.4.3 Sai số do tầng điện ly và tầng đối lưu 9 I.4.4 Sai số do nhiễu tín hiệu: 9 I.5 CÁC ỨNG DỤNG CỦA HỆ THỐNG ĐỊNH VỊ TOÀN CẦU GPS 10 1.5.1 Các ứng dụng trong trắc địa và bản đồ mặt đất 10 I.5.2 Các ứng dụng trong giao thông và thông tin trên mặt đất 10 I.5.3 Các ứng dụng trong trắc địa và bản đồ trên biển: 10 I.5.4 Các ứng dụng trong giao thông và hải dương học trên biển 11 I.5.5 Các ứng dụng trong trắc địa và bản đồ hàng không 11 I.5.6 Ứng dụng trong giao thông hàng không 11 I.5.7 Các ứng dụng trong thám hiểm không gian 11 I.5.8 Các ứng dụng trong việc nghỉ ngơi giải trí. 11 I.5.9 Các ứng dụng trong quân đội 11 I.6 SỰ PHÁT TRIỂN CỦA CÔNG NGHỆ GPS ĐO TĨNH TRONG GIAI ĐOẠN 1990 ĐẾN NAY 12 I.6.1 Nâng cao độ chính xác đo tĩnh thông qua các biện pháp hạn chế sai số đo: 12 I.6.2 Nâng cao độ chính xác tính toán nhờ các thuật toán mới: 13 I.6.3 Nâng cao khả năng công nghệ của GPS: 13 CHƯƠNG 2: CƠ SỞ LÝ THUYẾT KỸ THUẬT ĐO 14 II.1 ĐỒ HÌNH VỆ TINH VÀ ẢNH HƯỞNG CỦA MÔI TRƯỜNG. 14 II.2 ĐỒ HÌNH LƯỚI TRẮC ĐỊA ĐO BẰNG CÔNG NGHỆ GPS. 14 II.3 ĐO GPS. 16 II.4 XỬ LÝ KHÁI LƯỢC CÁC TRỊ ĐO GPS (TÍNH BASELINES) 17 II.4.1 Nguyên lý tính cạnh (tính baselines) 17 II.4.2 Phần mềm tính khái lược (tính cạnh) 18 II.5 BÌNH SAI LƯỚI TRẮC ĐỊA ĐO BẰNG CÔNG NGHỆ GPS. 20 II.6 VẤN ĐỀ XÁC ĐỊNH ĐỘ CAO ĐO BẰNG CÔNG NGHỆ GPS. 21 CHƯƠNG 3: QUY TRÌNH CÔNG NGHỆ ĐO VÀ XỬ LÝ TÍNH TOÁN BÌNH SAI KẾT QUẢ ĐO GPS ĐỂ THÀNH LẬP CÁC MẠNG LƯỚI TRẮC ĐỊA 23 (Theo công nghệ GPS của hãng Trimble Navigation) 23 TÀI LIỆU THAM KHẢO 27 MỞ ĐẦU Công nghệ ứng dụng hệ thống định vị toàn cầu GPS đã được đưa vào sản xuất ở Việt Nam từ năm 1991. Trên cơ sở sử dụng 3 máy thu GPS của hãng TRIMBLE loại 1 tần số 4000-ST, Liên hiệp KHSX Trắc địa bản đồ thuộc Cục Đo đạc và bản đồ Nhà nước lúc đó đã gấp rút thử nghiệm để đưa vào sản xuất, nhằm đáp ứng yêu cầu xây dựng các mạng lưới toạ độ nhà nước ở những khu vực khó khăn nhất của đất nước, mà bằng công nghệ truyền thống (phương pháp tam giác, đường chuyền) không có khả năng thực hiện, hoặc phải chi phí rất lớn và trong thời gian dài mới thực hiện được. Trong những năm 1991 đến 1994, theo kế hoạch nhiệm vụ do Cục Đo đạc và bản đồ Nhà nước giao, Liên hiệp KHSX Trắc địa bản đồ đã xây dựng thành công các mạng lưới toạ độ nhà nước hạng II ở khu vực Minh Hải, Sông Bé và Tây Nguyên, đồng thời đã xây dựng thành công mạng lưới trắc địa biển nối các đảo và quần đảo xa ( kể cả Trường Sa ) với mạng lưới toạ độ nhà nước trên đất liền. Từ đó đến nay, việc ứng dụng công nghệ GPS đã có những bước phát triển rất lớn. Từ chỗ chỉ có 3 máy thu GPS 1 tần số của hãng TRIMBLE, đến nay ở Việt Nam đã có trên 82 máy thu GPS các loại của các hãng khác nhau, từ máy thu đặt trên máy bay, máy thu 2 tần số, máy đo động đến máy có độ chính xác trung bình ( GEO EXPLORER ) để đo khống chế ảnh. Các lĩnh vực ứng dụng công nghệ GPS hiện nay cũng rất đa dạng, từ ứng dụng để xây dựng các mạng lưới toạ độ nhà nước, độ chính xác cao, khoảng cách lớn; ứng dụng trong dẫn đường và xác định toạ độ tâm chính ảnh khi bay chụp ảnh bằng máy bay; xây dựng các mạng lưới toạ độ, độ cao địa chính cấp 1; dẫn đường và xác định toạ độ đo vẽ bản đồ địa hình đáy biển; đo toạ độ, độ cao các điểm khống chế ảnh ngoại nghiệp; đo toạ độ độ cao các mốc quốc giới; xây dựng các mạng lưới công trình v.v... Các phần mềm để xử lý tính toán bình sai các trị đo GPS cũng đa dạng, chủ yếu là các phần mềm kèm theo máy thu, như TRIMVEC, TRIMVEC PLUS, TRIMNET, TRIMNET PLUS, GPSURVEY, PHASE PROCESSOR, GEOMATIC OFFICE (hãng TRIMBLE); GPPS (ASHTECH), v.v... và 1 phần mềm bình sai lưới GPS do Liên hiệp KHSX Trắc địa bản đồ xây dựng. Qua kết quả nghiên cứu và trực tiếp tham gia đo và xử lý, tính toán kết quả đo GPS chúng tôi biên soạn tập tài liệu này để đồng nghiệp tham khảo. Tập tài liệu gồm 3 chương sau đây: Chương 1: Giới thiệu hệ thống định vị toàn cầu GPS. Chương 2: Cơ sở lý thuyết kỹ thuật đo và xử lý tính toán bình sai kết quả đo GPS. Chương 3: Quy trình công nghệ đo và xử lý tính toán bình sai kết quả đo GPS để thành lập các mạng lưới trắc địa (thiết bị công nghệ GPS của Hãng Trimble Navigation) CHƯƠNG I: GIỚI THIỆU HỆ THỐNG ĐỊNH VỊ TOÀN CẦU GPS I.1 GIỚI THIỆU CHUNG: Hệ thống GPS là một hệ thống định vị vệ tinh tiếp theo sau hệ thống DOPPLER. GPS là từ viết tắt của GLOBAL POSITIONING SYSTEM. Hệ thống này bắt đầu được nghiên cứu từ những năm 70 do quân đội Mỹ chủ trì. Trong những năm đầu của thập kỷ 80 quân đội Mỹ đã chính thức cho phép dùng trong dân sự. Từ đó các nhà khoa học của nhiều nước phát triển đã lao vào cuộc chạy đua để đạt được những thành quả cao nhất trong lĩnh vực sử dụng hệ thống vệ tinh chuyên dụng GPS. Những thành tựu này cho kết quả trong hai hướng chủ đạo là chế tạo các máy thu tín hiệu và thiết lập các phần mềm để chế biến tín hiệu cho các mục đích khác nhau. Cho tới năm 1988, các máy thu GPS do 10 hãng trên thế giới sản xuất đã đạt được trình độ cạnh tranh trên thị trường. Vì lý do trên, giá máy đã giảm xuống tới mức hợp lý mang tính phổ cập. Mười hãng trên thế giới sản xuất máy thu GPS bao gồm các hãng chính như: TRIMBLE NAVIGATION (Mỹ), ASHTECH (Mỹ), WILD (Thụy sĩ), SEGSEL (Pháp), MINI MAX (Tây Đức). Theo dư luận thị trường hiện nay máy thu của hãng TRIMBLE NAVIGATION đang được đánh giá cao nhất. Về phương diện phần mềm của hệ thống GPS, chúng ta sẽ thấy tính đa dạng hơn của nó. Trị đo thu được chỉ có một loại, đó là tín hiệu vệ tinh phát ra. Chế biến các tín hiệu này bằng các phương pháp khác nhau, thuật toán khác nhau chúng ta có được các tham số hình học và vật lý khác nhau của trái đất. Chúng ta có thể nói khả năng phần mềm là vô tận. Với các tín hiệu thu được chúng ta có thể tính được tọa độ không gian tuyệt đối (với độ chính xác 10 m và có thể tới 1 m nếu sử dụng lịch vệ tinh chính xác), số gia tọa độ không gian (độ chính xác từ 1 cm tới 5 cm), số gia tọa độ địa lý (độ chính xác từ 0.7 đến 4 cm), số gia độ cao (độ chính xác từ 0.4 cm đến 2 cm), và số gia trọng lực (độ chính xác 0.2 mgl). Ngoài ra còn có thể có những tham số khác đang được nghiên cứu. Toàn bộ phần cứng của hệ thống GPS có tên đầy đủ là NAVSTAR GPS SYSTEM. NAVSTAR viết tắt chữ NAVIGATION SYSTEM WITH TIME AND RANGING. Phần cứng này gồm 3 phần: phần điều khiển (Control Segment), phần không gian (Space Segment) và phần sử dụng (User Segment). I.1.1 Phần điều khiển (Control Segment): Phần điều khiển gồm 8 trạm mặt đất trong đó có 4 trạm theo dõi (Monitor Station): Diego Garcia, Ascension, Kwajalein và Hawaii; một trạm điều khiển trung tâm (Master Control Station) và 3 trạm hiệu chỉnh số liệu (Upload Station). Lưới trắc địa đặt trên 4 trạm này được xác định bằng phương pháp giao thoa đường đáy dài (VLBI). Trạm trung tâm làm nhiệm vụ tính toán lại tọa độ của các vệ tinh theo số liệu của 4 trạm theo dõi thu được từ vệ tinh. Sau tính toán các số liệu được gửi từ trạm trung tâm tới 3 trạm hiệu chỉnh số liệu và từ đó gửi tiếp tới các vệ tinh. Như vậy trong vòng 1 giờ các vệ tinh đều có một số liệu đã được hiệu chỉnh để phát cho các máy thu. I.1.2. Phần không gian (Space Segment): I.1.2.1 Chòm vệ tinh GPS: Bao gồm 24 vệ tinh bay trên quỹ đạo có độ cao đồng nhất 20 200 km, chu kỳ 12 giờ, phân phối đều trên 6 mặt phẳng quỹ đạo nghiêng với xích đạo một góc 55o. Việc bố trí này nhằm mục đích để tại mỗi thời điểm và mỗi vị trí trên trái đất đều có thể quan sát được 4 vệ tinh. Mỗi vệ tinh phát 2 tần số sóng mang với tần số cao L1=1575.42 MHz và L2=1227.60 MHz. Loại sóng này phát trên cơ sở dãy số tựa ngẫu nhiên bao gồm các số 0 và 1. Mã này được gọi tên là mã P (Precise). Bên cạnh mã P sóng còn mang đi mã C/A (Clear/Acquisition) trong sóng L1. Mã C/A được phát với 2 tần số 10.23 MHz và 1.023 MHz. Ngoài 2 mã trên vệ tinh còn phát mã phụ có tần số 50 Hz chứa các thông tin về lịch vệ tinh. Các vệ tinh đều được trang bị đồng hồ nguyên tử với độ chính xác cao. Các vệ tinh NAVSTAR có 2 trạng thái: "hoạt động khỏe" ( Healthy) và "hoạt động không khoẻ ( Unhealthy). Hai trạng thái của vệ tinh này được quyết định do 4 trạm điều khiển mặt đất. Chúng ta có thể sử dụng tín hiệu của các vệ tinh ở cả hai trạng thái "hoạt động khỏe" và "hoạt động không khỏe". I.1.2.2 Cấu trúc tín hiệu GPS Mỗi vệ tinh đều truyền hai tần số dùng cho công việc định vị là tần số 1575,42 MHz và tần số 1227,60 NHz. Hai sóng mang này gọi là L1 và L2, rất mạch lạc và được điều chế bởi những tín hiệu khác nhau. Mã nhiễu giải ngẫu nhiên (PRN) thứ nhất được biết dưới cái tên là mã C/A (Coarse/Acquisite-code), bao gồm một chuỗi các số cộng một và trừ một, được phát đi ở tần số fo/10= 1.023 MHz. Chuỗi này được lặp lại sau mỗi mili giây đồng hồ. Mã nhiễu giải ngẫu nhiên (PRN) thứ hai, được biết dưới cái tên là mã P (Precise - code), bao gồm một chuỗi các số cộng một và trừ một khác, được phát đi ở tần số fo = 10,23 MHz. Chuỗi này chỉ lặp lại sau 267 ngày. Thời gian 267 ngày này được cắt ra làm 38 đoạn 7 ngày. Trong 38 đoạn này có một đoạn không dùng đến, 5 đoạn dùng cho các trạm mặt đất , theo dõi các tàu thuyền sử dụng, gọi là trạm giả vệ tinh (Pseudolite), còn lại 32 đoạn 7 ngày dành cho những vệ tinh khác nhau. Mã Y (Y-code) là mã PRN tương tự như mã P, có thể dùng thay cho mã P. Tuy nhiên phương trình tạo ra mã P thì được công bố rộng rãi và không giữ bí mật, trong khi phương trình tạo ra mã Y thì giữ bí mật. Vì vậy, nếu mã Y được sử dụng thì những người sử dụng GPS không có giấy phép (nói chung là những người không thuộc quân đội Mỹ và đồng minh của họ) sẽ không thu được mã P (hoặc mã Y). Sóng mang L1 được điều chế bằng cả 2 mã ( Mã-C/A và Mã`-P hoặc mã Y), trong khi sóng mang L2 chỉ bao gồm một Mã-P hoặc mã Y. Các mã được điều chế trên sóng mang bằng cách giản đơn có ý thức. Nếu mã có trị số -1 thì phase sóng mang đổi 1800, còn nếu mã số có trị số +1 thì phase sóng mang giữ nguyên không thay đổi. Cả hai sóng mang đều mang thông báo vệ tinh (Satellite message) cần phát dưới dạng một dòng dữ liệu được thiết kế ở tần số thấp (50Hz) để thông báo tới người sử dụng tình trạng và vị trí của vệ tinh. Các dữ liệu này sẽ được các máy thu giải mã và dùng vào việc xác định vị trí của máy theo thời gian thực. I.1.3. Phần sử dụng (User Segment): Phần sử dụng bao gồm các máy thu tín hiệu từ vệ tinh trên đất liền, máy bay và tàu thủy. Các máy thu này phân làm 2 loại: máy thu 1 tần số và máy thu 2 tần số. Máy thu 1 tần số chỉ nhận được các mã phát đi với sóng mang L1. Các máy thu 2 tần số nhận được cả 2 sóng mang L1 và L2. Các máy thu 1 tần số phát huy tác dụng trong đo tọa độ tuyệt đối với độ chính xác 10 m và tọa độ tương đối với độ chính xác từ 1 đến 5 cm trong khoảng cách nhỏ hơn 50 km. Với khoảng cách lớn hơn 50 km độ chính xác sẽ giảm đi đáng kể (độ chính xác cỡ dm). Để đo được trên những khoảng cách dài đến vài nghìn km chúng ta phải sử dụng máy 2 tần số để khử đi ảnh hưởng của tầng ion trong khí quyển trái đất. Toàn bộ phần cứng GPS hoạt động trong hệ thống tọa độ WGS-84 với kích thước elipsoid a=6378137.0 m và (=1:29825722. I.1.3.1 Các bộ phận của một thiết bị GPS trong phần sử dụng. Phần sử dụng GPS có thể được coi gồm 3 bộ phận chính: * Phần cứng * Phần mềm * Phần triển khai công nghệ Phần cứng bao gồm máy thu mạch điện tử , các bộ dao động tần số vô tuyến RF (Radio Friquency), các ăngten và các thiết bị ngoại vi cần thiết để hoạt động máy thu. Đặc điểm chính yếu của bộ phận này là tính chắc chắn, có thể xách tay, tin cậy khi làm việc ngoài trời và dễ thao tác. Phần mền bao gồm những chương trình tính dùng để xử lý dữ liệu cụ thể, chuyển đổi những thông báo GPS thành những thông tin định vị hoặc dẫn đường đi hữu ích. Những chương trình này cho phép người sử dụng tác động khi cần để có thể lợi dụng được những ưu điểm của nhiều đặc tính định vị GPS. Những chương trình này có thể sử dụng được trong điều kiện ngoại nghiệp và được thiết kế sao cho có thể cung cấp những thông báo hữu ích về trạng thái và sự tiến bộ của hệ thống tới người điều hành. Ngoài ra trong phần mềm còn bao gồm những chương trình phát triển tính độc lập của máy thu GPS , có thể đánh giá được các nhân tố như tính sẵn sàng của vệ tinh và mức độ tin cậy của độ chính xác. Phần triển khai công nghệ hướng tới mọi lĩnh vực liên quan đến GPS như: cải tiến thiết kế máy thu, phân tích và mô hình hoá hiệu ứng của ăngten khác nhau, hiệu ứng truyền sóng và sự phối hợp của chúng trong phần mềm xử lý số liệu, phát triển các hệ thống liên kết truyền thông một cách tin cậy cho các hoạt động định vị GPS cự ly dài và ngắn khác nhau và theo dõi các xu thế phát triển trong lĩnh vực giá cả và hiệu suất thiết bị. I.1.3.2 Những bộ phận chính của máy thu GPS. Các bộ phận cơ bản của một máy thu GPS bao gồm: * Ăngten và bộ tiền khuếch đại * Phần tần số vô tuyến (RF) * Bộ vi xử lí * Đầu thu hoặc bộ điều khiển và thể hiện * Thiết bị ghi chép * Nguồn năng lượng Ăngten và bộ tiền khuếch đại : Các Ăngten dùng cho máy thu GPS thuộc loại chùm sóng rộng , vì vậy không cần phải hướng tới nguồn tín hiệu giống như các đĩa ăngten vệ tinh . Các ăngten này tương đối chắc chắn và có thể đặt trên ba chân hoặc lắp trên các phương tiện giao thông, vi trí thực sự được xác định là trung tâm Phase của ăngten, sau đó được truyền lên mốc trắc địa. Phần tần số vô tuyến : Bao gồm các vi mạch điện tử xử lí tín hiệu và kết hợp số hóa và giải tích. Mỗi kiểu máy thu khác nhau dùng những kỹ thuật xử lí tín hiệu khác nhau đôi chút, các phương pháp này là : * Tương quan mã * Phase và tần số mã * Cầu phương tín hiệu sóng mang Phần tần số vô tuyến bao gồm các kênh sử dụng một trong ba phương pháp nói trên để truy cập các tín hiệu GPS nhận được, số lượng các kênh biến đổi trong khoảng từ 1 đến 12 tuỳ theo nhũng máy thu khác nhau. Bộ điều khiển: Cho phép người điều hành can thiệp vào bộ vi xử lí. Kíck thước và kiểu dáng của bộ điều khiển ở các loại máy thu khác nhau cũng khác nhau. Thiết bị ghi : Người ta dùng máy ghi băng từ hoặc các đĩa mềm để ghi các trị số quan trắc và những thông tin hữu ích khác được tách ra từ những tin hiệu thu được Nguồn năng lượng : Phần lớn các máy thu đều dùng nguồn điện một chiều điện áp thấp, chỉ có một vài máy đòi hỏi phải có nguồn điện xoay chiều. I.2 NGUYÊN LÝ HOẠT ĐỘNG CỦA HỆ THỐNG GPS: Như chúng ta đã biết về nguyên lý hoạt động của hệ thống DOPPLER, đó là nguyên lý của sự thay đổi tần số tín hiệu khi nơi phát tín hiệu chuyển động. Hệ thống GPS hoạt động trên một nguyên lý hoàn toàn khác. Để xác định tọa độ tuyệt đối của một điểm mặt đất chúng ta sử dụng kỹ thuật "tựa khoảng cách". Kỹ thuật này được mô tả bằng công thức:  (1) ở đây: s=[xs ys zs] - Tọa độ vệ tinh; p=[xp yp zp] - Tọa độ điểm mặt đất; c - Tọa độ sóng; t - Thời gian sóng đi từ vệ tinh tới máy thu. (t - Số hiệu chỉnh thời gian. Tập hợp các phương trình đo dạng (1) ta có hệ thống phương trình sai số có 4 ẩn số là t, xp yp zp trong đó xs ys zs biết được từ mã lịch vệ tinh (tần số 50Hz), t được xác định theo đồng hồ vệ tinh và máy thu theo mã C/A, c là hằng số tốc độ truyền sóng điện từ. Theo kỹ thuật này chúng ta có thể xác định tọa độ với độ chính xác 10 m. Nếu kết quả trên được gửi tới trạm điều khiển trung tâm, chúng ta có được tọa độ tuyệt đối mặt đất với độ chính xác 1 m. Sở dĩ độ chính xác được tăng lên đáng kể vì máy thu chỉ thu được lịch vệ tinh dự báo, còn ở trạm điều khiển trung tâm có lịch vệ tinh chính xác. Qua đây chúng ta thấy tọa độ tuyệt đối các điểm mặt đất được xác định có độ chính xác kém phương pháp DOPPLER. Sở dĩ như vậy vì vệ tinh của hệ thống GPS có độ cao gấp đôi hệ thống DOPPLER. Tọa độ tuyệt đối với độ chính xác 10 m của hệ thống GPS chỉ dùng để đáp ứng 2 mục đích: - Đạo hàng ( định vị cho các đối tượng chuyển động như tàu biển, máy bay....) - Cung cấp tọa độ gần đúng cho phương pháp đo tọa độ tương đối GPS. Ngược lại với độ chính xác của tọa độ tuyệt đối, công nghệ GPS đã đạt được thành tựu đáng kể trong việc xác định tọa độ tương đối. Nguyên lý đo tọa độ tương đối là xác định pha của sóng mang L1 (với máy thu 1 tần số) hay L1 và L2 (với máy thu 2 tần số). Chúng ta có công thức: S = N( + (( (2) Trong đó: ( - Bước sóng (( = c/f) f: Tần số sóng; N: Số nguyên lần bước sóng; (: Pha của sóng; S: Khoảng cách vệ tinh - máy thu. Từ công thức (2) chúng ta có: ( = (f/c).S - N (3) Xét công thức (3) từ một phía khác chúng ta có thể viết: ((t) = (s(ts ) - (p(t) + Nsp (4) (s(ts ) - Pha của sóng tại thời điểm ts khi vệ tinh bắt đầu phát tín hiệu; (p(t) - Pha của sóng tại thời điểm t khi máy thu nhận được tín hiệu; Nsp - Số nguyên lần bước sóng. Từ các công thức trên ta suy ra: ((t) = (s(t) - (f/c).Ssp - (p(t) + Nsp (5) Kết hợp các thành phần của vế phải của công thức (5) chúng ta biểu diễn dưới dạng: ((t) = - (f/c).Ssp - (p(t) + (s(t) + (sp (6) Trong đó: (p(t) - Thành phần ảnh hưởng hệ thống pha (t) do máy thu gây ra (chủ yếu là số hiệu chỉnh đồng hồ máy thu) (s(t) - Thành phần ảnh hưởng hệ thống pha (t) do vệ tinh gây ra (chủ yếu là số hiệu chỉnh đồng hồ vệ tinh) (sp(t) - Thành phần ảnh hưởng hệ thống pha (t) do cả vệ tinh và máy thu gây ra không phụ thuộc thời gian (chủ yếu là (s(to) - (p(to) + Nsp , trong đó to là thời điểm bắt đầu đo) Công thức (6) chính là công thức cơ bản để lập phương trình đo trong kỹ thuật đo tọa độ tương đối GPS. Điều quan trọng nhất là chúng ta phải tổ hợp các trị đo sao cho khử được các thành phần hệ thống p(t), s(t) và p. I.3 CÁC PHƯƠNG PHÁP ĐỊNH VỊ BẰNG HỆ THỐNG GPS I.3.1 Phép định vị tĩnh và định vị động. Hệ GPS có thể được dùng để định vị các vật thể tĩnh tại hoặc các vật thể chuyển động. Mặc dù trị quan trắc là như nhau, nhưng trên thực tế do ăngten tĩnh hoặc động khác nhau nên dãn đến những khác nhau rất lớn. Nếu ăngten cố định chúng ta có thể quan trắc nhiều cự li đến vệ tinh khác nhau, việc làm này cho phép ta có những trị đo dư thừa, giải nghiệm từ nhiều trị đo và nhận được độ chính xác cao của vị trí được xác định. Khi ăngten chuyển động chúng ta chỉ có thể nhận được những chỉ định (Fix) tức thời, (thông thường từ 4 cự ly được quan trắc đồng thời hoặc gần như đồng thời) không có số đo dư thừa. Trong trường hơp định vị tĩnh, chúng ta có thể nhận được hoặc là một kết quả theo thời gian thực, trong đó môĩ trị quan trắc mới đều được sử lý sao cho có thể cải thiện được trị toạ độ vị trí đã được xác định trước đó, hoặc là các trị quan trắc có thể được xử lý sau khi kết thúc công tác ngoài trời.Chúng ta gọi là nghiệm xử lý sau (postprocessed solution). Trong phép định vị động, thường người ta cũng tìm kiếm nghiệm theo thời gian thực, nhưng nghiệm này chỉ bao gồm một vị trí ( Fix ) tại một thời điểm. Một chuỗi các kết quả tại những chỉ định này ( lộ trình rời rạc của phương tiện lưu thông ) có thể được xử lý bằng cách sử dụng một trong số những thủ thuật tiếp cận bằng đường cong trơn. I.3.2 Phép định vị tương đối. Khi đòi hỏi trị đo có độ chính xác cao, cần phải sử dụng phép định vị tương đối. Trong kiểu đo này, hai ăngten cùng hai máy thu tương ứng được đặt tại hai đầu của cạnh cần quan trắc và phải làm việc đồng thời. Sở dĩ có thể đạt được độ chính xác cao trong kiểu đo này là vì một số sai số tích luỹ trong các cự ly quan trắc