Đề tài Các ứng dụng của các định lý rôn, lagrăng, bôxanô - Côsi

Trong những năm gần đây ,những kỳ thi học sinh giỏi cấp quốc gia , quốc tế,trong các kỳ thi Olympic Toán Sinh Viên giửacác trường đại học trong nước thì các bài toán liên quan đến tính liên tục và đạo hàm của hàm số thường xuyên xuất hiện và dạng phổ biến nhất là chứng minh phương trình có nghiệm , giải phương trình ,chứng minh bất đẳng thức . Trong phạm vi đề tài nàychúng ta sẽ tập chung nghiên cứu các ứng dụng của các định lí Roll, Lagange ,Bonxano- Cauchy trong việc giải quyết các bài tập nêu trên . I.Đối tượng nghiên cứu của đề tài: Đối tượng nghiên cứu của đề tài chủ yếu là các bài tập ra trong các sách giải tích ,các đề thi Olympic liên quan đến ứng dụng liên tục và đạo hàm . II.Nhiệm vụ của đề tài: Nghiên cứu các ứng dụng của các định lí Bonxano-Cauchy, Roll,Langange để chứng minh phương trình có nghiệm ,giải phương trình và chứng minh bất đẳng thức . III.Nội dung nghiên cứu của đề tài: Chương I: những cơ sở lí luận của đề tài Chương II: ứng dụng của định lí Bonxano – Cauchy chứng minh phươngtrình có nghiệm Chương III: ứng dụng định lí Roll,Lagange,Cauchy chứng minh phương trình có nghiệm Chương IV: ứng dụng của định lí Lagange giải phương trình Chương V:ứng dụng định lí Lagange chứng minh bất đẳng thức Đối tượng nghiên cứu của đề tài chủ yếu là các bài tập ra trong các kỳ thi Olympic,đề thi học sinh giỏi cấp quốc gia và quốc tế. IV. Phương pháp nghiên cứu: -Tham khảo tài liệu. -Hệ thống các bài tập và phân loại. -Hướng dẩn phương pháp giải. Trang1

pdf39 trang | Chia sẻ: ngtr9097 | Lượt xem: 6208 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Các ứng dụng của các định lý rôn, lagrăng, bôxanô - Côsi, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên