Các tia phóng xạ luôn tồn tại tràn ngập trong thế giới của chúng ta từ bức xạ tự nhiên alpha,
beta, gamma, các tia vũ trụ, cho đến bức xạ nhân tạo của các vụ nổ hạt nhân, các cuộc thử
nghiệm, . Trong các loại bức xạ đó thì bức xạ alpha, beta là những loại bức xạ cần quan tâm vì đặc
tính không tác hại khi bị chiếu ngoài nhưng lại gây nguy hiểm khi chúng được phát ra từ bên trong
cơ thể. Cụ thể như sau:
- Trong không gian, bức xạ alpha không truyền xa và bị cản lại toàn bộ bởi một tờ giấy hoặc
màng ngoài của da. Tuy nhiên nếu một chất phát tia alpha được đưa vào trong cơ thể nó sẽ làm
ion hóa mạnh các tế bào tạo ra liều chiếu trong đối với các mô nhạy cảm mà các mô này không
có lớp bảo vệ bên ngoài như da.
- Bức xạ beta bao gồm các electron có điện tích nhỏ hơn so với hạt alpha và có khả năng xuyên
sâu hơn, beta có khả năng cản lại bởi tấm kim loại, kính hay quần áo bình thường, nó có thể
xuyên qua lớp ngoài của da và làm tổn thương lớp da bảo vệ. Nếu các bức xạ beta phát ra
trong cơ thể nó có thể chiếu xạ các mô bên trong.
Trong đó, với tính chất đặc trưng quan trọng là quãng chạy ngắn nên việc khảo sát các vấn đề
alpha, beta thường hay gặp khó khăn từ quá trình làm mẫu cho đến thiết bị mà việc xác định hiệu
suất của máy một cách chính xác là một vấn đề thiết yếu ảnh hưởng lớn đến kết quả đo đạc. Do vậy
“Khai thác và vận hành hệ đo tổng alpha, beta UMF-2000 tại phòng thí nghiệm hạt nhân
trường Đại học Sư phạm Thành Phố Hồ Chí Minh”
                
              
                                            
                                
            
 
            
                
59 trang | 
Chia sẻ: duongneo | Lượt xem: 1600 | Lượt tải: 0
              
            Bạn đang xem trước 20 trang tài liệu Đề tài Khai thác và vận hành hệ đo tổng alpha, beta UMF - 2000 tại phòng thí nghiệm hạt nhân trường Đại học Sư phạm Thành Phố Hồ Chí Minh, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO 
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH 
KHOA VẬT LÝ 
------  ------ 
LUẬN VĂN TỐT NGHIỆP ĐẠI HỌC 
Đề tài: 
SVTH: NGUYỄN THỊ MỸ TIỀN 
GVHD: ThS. LÊ CÔNG HẢO 
THÀNH PHỐ HỒ CHÍ MINH, 2010 
Lời cảm ơn 
Ngày hôm nay để có thể thực hiện và hoàn thành bài luận này là nhờ vào kiến thức 
tích lũy được trong 4 năm đại học dưới sự hướng dẫn tận tình của các thầy cô. Bên cạnh 
sự cố gắng của bản thân, em cũng đã nhận được nhiều sự giúp đỡ từ các thầy cô và bạn 
bè. 
Em xin gửi lời cảm ơn đến quý thầy cô trong khoa Vật lý đã truyền đạt kiến thức, 
các thầy cô phụ trách phòng thí nghiệm hạt nhân trường Đại học Sư Phạm đã tận tình 
giúp đỡ, tạo điều kiện thuận lợi trong quá trình đo đạt thực nghiệm. 
Đồng thời em xin gửi lời cảm ơn đến quý thầy cô phụ trách phòng thí nghiệm, các 
bạn lớp Lý 06 ngành Vật lý Hạt nhân trường Đại học Khoa học Tự nhiên TP.Hồ Chí 
Minh đã giúp đỡ cơ sở vật chất và hướng dẫn nhiệt tình trong quá trình tạo mẫu. 
Và nhất là em xin chân thành cảm ơn thầy Lê Công Hảo, thầy đã trực tiếp hướng 
dẫn em thực hiện bài luận, giúp em những kiến thức chuyên môn cũng như kiến thức 
thực tế trong quá trình thực hiện khóa luận. 
Em cũng xin cảm ơn đến thầy phản biện đã dành thời gian đọc và đóng góp ý kiến 
cho bài luận văn này được hoàn thành tốt hơn. 
Cảm ơn các bạn đã quan tâm chia sẻ trong thời gian qua. 
Cuối cùng, xin cảm ơn sâu sắc đến ba mẹ cùng toàn thể gia đình đã luôn bên con 
trong thời gian qua, ủng hộ động viên con trong quá trình thực hiện luận văn. 
LỜI MỞ ĐẦU 
Các tia phóng xạ luôn tồn tại tràn ngập trong thế giới của chúng ta từ bức xạ tự nhiên alpha, 
beta, gamma, các tia vũ trụ, cho đến bức xạ nhân tạo của các vụ nổ hạt nhân, các cuộc thử 
nghiệm,. Trong các loại bức xạ đó thì bức xạ alpha, beta là những loại bức xạ cần quan tâm vì đặc 
tính không tác hại khi bị chiếu ngoài nhưng lại gây nguy hiểm khi chúng được phát ra từ bên trong 
cơ thể. Cụ thể như sau: 
- Trong không gian, bức xạ alpha không truyền xa và bị cản lại toàn bộ bởi một tờ giấy hoặc 
màng ngoài của da. Tuy nhiên nếu một chất phát tia alpha được đưa vào trong cơ thể nó sẽ làm 
ion hóa mạnh các tế bào tạo ra liều chiếu trong đối với các mô nhạy cảm mà các mô này không 
có lớp bảo vệ bên ngoài như da. 
- Bức xạ beta bao gồm các electron có điện tích nhỏ hơn so với hạt alpha và có khả năng xuyên 
sâu hơn, beta có khả năng cản lại bởi tấm kim loại, kính hay quần áo bình thường, nó có thể 
xuyên qua lớp ngoài của da và làm tổn thương lớp da bảo vệ. Nếu các bức xạ beta phát ra 
trong cơ thể nó có thể chiếu xạ các mô bên trong. 
Trong đó, với tính chất đặc trưng quan trọng là quãng chạy ngắn nên việc khảo sát các vấn đề 
alpha, beta thường hay gặp khó khăn từ quá trình làm mẫu cho đến thiết bị mà việc xác định hiệu 
suất của máy một cách chính xác là một vấn đề thiết yếu ảnh hưởng lớn đến kết quả đo đạc. Do vậy 
“Khai thác và vận hành hệ đo tổng alpha, beta UMF-2000 tại phòng thí nghiệm hạt nhân 
trường Đại học Sư phạm Thành Phố Hồ Chí Minh” được thực hiện với mục đích xác định hiệu 
suất của máy, cùng với 10 mẫu điện phân khác nhau được tạo ra nhằm xác định hoạt độ của các mẫu 
dựa trên ưu điểm nổi bật của máy là có thể xác định đồng thời tổng hoạt độ bức xạ alpha và tổng 
hoạt độ bức xạ beta phát ra từ mẫu. Qua đó đánh giá về độ chính xác của máy khi so sánh hoạt độ 
của các mẫu trên hệ máy này với hoạt độ của các mẫu khi đo trên hệ Alpha Analyst của phòng thí 
nghiệm hạt nhân Đại học Khoa học Tự nhiên. Từ kết quả khởi đầu này có thể tiến hành đo mẫu môi 
trường với những hiệu chỉnh thích hợp để đạt được kết quả chính xác. 
Với mục đích như trên thì bố cục của bài luận gồm 3 chương về cơ sở lý thuyết và quá trình 
thực nghiệm như sau: 
Chương 1: Các tính chất của bức xạ alpha, beta. Trong chương này trình bày về các quá trình 
phân rã alpha, beta cũng như tính chất của các quá trình phân rã đó và tương tác của bức xạ alpha, 
beta với vật chất. 
Chương 2: Giới thiệu hệ đo tổng alpha, beta UMF -2000 tại phòng thí nghiệm hạt nhân trường 
Đại học Sư Phạm Thành Phố Hồ Chí Minh. Phần này giúp cho việc khai thác vận hành hệ máy dễ 
dàng với việc mô tả các thiết bị, nguyên tắc hoạt động, các đặc trưng và dữ liệu cần thiết cho quá 
trình chuẩn hóa. 
Chương 3: Thực nghiệm trình bày quá trình chuẩn bị mẫu, quá trình đo đạc, xử lí kết quả. 
Phần kết luận 
Đưa ra kết quả và những nhận xét trong quá trình tiến hành thí nghiệm, từ đó có những đề xuất 
giúp cho hệ máy có những ứng dụng rộng rãi. 
CHƯƠNG 1: CÁC TÍNH CHẤT CỦA BỨC XẠ 
ALPHA, BETA 
1.1 Cơ sở lý thuyết về bức xạ alpha, beta [1] 
1.1.1 Phân rã alpha 
Hạt alpha gồm hai proton và hai neutron liên kết với nhau giống như hạt nhân helium, do đó 
có thể viết là 2He
4, có điện tích bằng +2e và có khối lượng gần bằng 4 lần khối lượng nucleon. Hạt 
alpha xuất hiện trong quá trình phân rã của hạt nhân phóng xạ nặng như uranium, radium,đôi khi 
quá trình phân rã alpha làm hạt nhân ở trạng thái khích thích do đó sẽ kèm theo phân rã gamma để 
giải phóng năng lượng. 
 Phân rã alpha xảy ra khi hạt nhân phóng xạ có tỉ số N/Z quá thấp. Khi phân rã alpha, hạt nhân 
ban đầu ZX
A chuyển thành hạt nhân Z-2Y
A-4 và phát ra hạt alpha. 
 ZX
A → Z-2Y
A-4 + 2He
4 (1.1) 
Hình 1.1 Phân rã alpha 
Về quan hệ khối lượng, phân rã alpha thỏa mãn điều kiện: 
m e eM M m 2m Q    (1.2) 
trong đó Mm, Me, mα và me tương ứng với khối lượng các nguyên tử mẹ, nguyên tử con, hạt 
nhân alpha và hạt electron. 
Q là khối lượng tương đương với năng lượng tổng cộng giải phóng khi phân rã bằng tổng động 
năng của hạt nhân con và hạt alpha. Hai hạt electron quỹ đạo bị mất đi khi hạt nhân mẹ phân rã ra 
hạt nhân con có số nguyên tử thấp hơn. 
Hạt alpha phát ra với năng lượng xác định và suất ra cố định, có năng lượng là dạng phổ vạch. 
Theo sau quá trình phân rã alpha thường kèm theo sự phân rã gamma. Hình 1.2 là sơ đồ phân rã 
alpha và gamma của hạt nhân 88Ra
226 với 94,3% hạt alpha có động năng 4,8 MeV và 5,7% có động 
năng 4,6 MeV. Ở nhánh phát alpha năng lượng thấp 4,6 MeV hạt nhân con vẫn ở trạng thái kích 
thích và phát tiếp bức xạ gamma bằng 0,2 MeV trở về trạng thái cơ bản. 
Hình 1.2 Sơ đồ phân rã alpha của 88Ra
226 
Hiện nay có hơn 200 hạt nhân phân rã alpha, chủ yếu xảy ra đối với các hạt nhân nặng với 
Z>83. Ngoài ra có một số nhỏ hạt nhân vùng đất hiếm cũng phân rã alpha với A = 140 đến 160. 
1.1.2 Các tính chất của phân rã alpha 
1.1.2.1 Các đặc trưng của phân rã alpha 
Các đặc trưng quan trọng của phân rã alpha là thời gian bán rã T1/2 của hạt nhân trước phân rã, 
động năng E và quãng chạy R của hạt alpha. 
- Thời gian bán rã T1/2 được xác định trực tiếp nhờ phép đo độ suy giảm hoạt độ theo thời gian 
hoặc được xác định theo số phân rã trong một đơn vị thời gian hay từ quy luật cân bằng thế kỷ. 
Thời gian bán rã của các hạt nhân phân rã alpha thay đổi trong một dãy rất rộng từ vài giây 
đến vài tỉ năm như 82Pb
204 có T1/2=1,4.10
7 năm còn 86Rn
215 có T1/2=10
-6 s. 
- Năng lượng hạt alpha có thể xác định bằng phổ kế từ hay buồng ion hóa. Năng lượng các hạt 
bay ra thay đổi trong một dãy rất hẹp, đối với các hạt nhân nặng thì năng lượng thay đổi từ 4 
đến 9 MeV, đối với nhóm đất hiếm từ 2 đến 4,5 MeV. 
- Quãng chạy của hạt alpha được xác định bằng buồng bọt Wilson hay nhũ tương ảnh. Dựa vào 
hệ thức liên hệ giữa năng lượng và quãng chạy, ta có công thức tính quãng chạy trong không 
khí 3 – 7 cm là 3/2kkR 0,318E , còn trong môi trường với hạt nhân A thì tính theo công thức 
1/3
kkR 0,56R A . 
88Ra
226 
4,785 
3,3%  
4,652 
5,5% 
 
0,186 
0 
4,785 
94,4% 
 
86Rn
222 
Tính chất quan trọng nhất của các hạt nhân phân rã alpha là sự phụ thuộc của thời gian bán rã 
T1/2 vào năng lượng E của hạt alpha bay ra. Chẳng hạn như nếu giảm 1% năng lượng thì có thể làm 
tăng thời gian bán rã lên một bậc, nếu giảm 10% năng lượng thì T1/2 thay đổi từ 2 đến 3 bậc. 
Sự phụ thuộc của T1/2 vào E tuân theo định luật Geiger- Nuttall như sau: 
1/2
D
lg T C
E
  (1.3) 
Với C và D là hằng số không phụ thuộc vào số khối A. 
1.1.2.2 Cấu trúc tinh tế của phổ năng lượng alpha 
Dựa vào việc năng lượng giảm đều đặn khi tăng số khối cho phép ta xác định được năng lượng 
các hạt alpha đối với đồng vị khác của một nguyên tố nào đó. 
Các hạt alpha phát ra từ cùng một đồng vị sẽ có năng lượng như nhau, tức là phổ năng lượng 
đơn sắc. Nhưng thí nghiệm chính xác chứng tỏ phổ năng lượng alpha thường có cấu trúc tinh tế, tức 
là có các vạch năng lượng nằm sít nhau. Nên trong thực tế có một số hạt nhân chỉ có một nhóm ứng 
với một giá trị năng lượng nhưng cũng có một số hạt nhân phát ra nhiều hạt alpha với năng lượng 
khác nhau. Đó chính là cấu trúc tinh tế của phổ alpha. 
1.1.2.3 Điều kiện về năng lượng đối với phân rã alpha 
Xét quá trình phân rã alpha theo công thức (1.1). Để phân rã alpha xảy ra thì năng lượng liên 
kết của hạt nhân mẹ EA,Z phải nhỏ hơn tổng năng lượng liên kết của hạt nhân con EA-4,Z-2 và hạt 
alpha Eα. Tức là: 
lk,A 4,Z 2 lk , lk,A,ZE E E E      >0 (1.4) 
Hạt nhân mẹ có năng lượng liên kết là 28 MeV do đó năng lượng liên kết riên trên một 
nucleon là 7 MeV, như vậy để phân rã alpha xảy ra thì năng lượng liên kết riêng của hạt nhân mẹ 
phải nhỏ hơn 7 MeV. Vì vậy các hạt nhân nhẹ không thể phân rã alpha vì năng lượng liên kết riêng 
của chúng cỡ 8 MeV. 
1.1.2.4 Cơ chế phân rã alpha 
Ba yếu tố cần tính đến trong cơ chế phân rã alpha là trường thế Coulomb quanh hạt nhân, lực 
ly tâm và cấu trúc hạt nhân. 
- Trường thế Coulomb và hiệu ứng đường ngầm 
Để giải thích sự phụ thuộc mạnh của thời gian bán rã hạt nhân vào năng lượng hạt alpha thì 
cần phải xem xét cơ chế để hạt alpha thoát ra khỏi hạt nhân. Giả thuyết gần đúng nhất được xem xét 
là coi hạt alpha hình thành và tồn tại trong hạt nhân trước khi thoát khỏi hạt nhân. Hạt alpha là hạt 
mang điện nên ngoài lực tương tác hạt nhân còn chịu tác dụng của lực Coulomb. 
Để giải bài toán tương tác này ta giả sử hạt alpha đi từ ngoài vào. Thế Coulomb do hạt nhân 
tương tác lên tỉ lệ nghịch với khoảng cách r theo biểu thức: 
2
Coulomb
2Ze
U
r
 (1.5) 
Hàm này được thể hiện qua hình 
Hình 1.3 Thế tương tác hạt nhân và thế Coulomb đối với hạt alpha 
Thế tăng dần trong miền ngoài bán kính hạt nhân, tại đó lực hạt nhân bằng 0. Đến biên hạt 
nhân r = R thì lực hạt nhân đóng vai trò quan trọng và đường biểu diễn tăng giảm đột ngột theo 
đường thẳng đứng. Dạng bên trong hạt nhân r < R chưa được biết tường tận, ở đây giả thuyết thế có 
dạng hố hình chữ nhật với thế không đổi bên trong hạt nhân, chiều cao bờ thế Coulomb tại r = R = 
10-12 cm với Z=100 là 
2
r
2Ze
U 30 MeV
r
  (1.6) 
Hạt alpha phân rã từ các hạt nhân nặng có năng lượng từ 4 đến 9 MeV, tức là nhỏ hơn chiều 
cao hàng rào thế. Theo cơ học cổ điển thì hạt alpha không thể vượt ra rào thế để ra ngoài, tức là 
không thể xảy ra quá trình phân rã alpha. Tuy nhiên, theo cơ lượng tử thì hạt alpha có thể truyền qua 
hàng rào thế Coulomb theo hiệu ứng đường ngầm. 
Giải bài toán về hiệu ứng đường ngầm ta thu được hệ số truyền qua D 
2
2m
D exp (U E)dr
 
   
 
 
 (1.7) 
Nếu hạt alpha trong hạt nhân có vận tốc v thì nó đi đến bờ thế trung bình v/R lần trong 1 giây. 
Như vậy hằng số phân rã alpha bằng: 
R r 
U(r) 
Ur 
Eα 
0 
2
v v 2m
D exp (U E)dr
R R
 
     
 
 
 (1.8) 
Mà 
0,693
T 
, do đó thời gian bán rã phụ thuộc rất mạnh vào bán kính hạt nhân R. 
Để đánh giá bậc của thời gian bán rã ta coi U0 – E = 20 MeV, d = 2.10
-12 cm, khi đó 84 36D e 10   . 
Do đó 161/2
1
T 10 s  
109 năm. Thời gian này là hợp lý vì cùng cỡ thời gian bán rã của 238U. 
1.1.2.5 Vai trò của bờ thế ly tâm 
Trong các tính toán trên ta coi hạt alpha bay ra với moment quỹ đạo l = 0, nếu hạt alpha bay ra 
với l 0 thì nó phải vượt qua bờ thế ly tâm bổ sung ngoài thế Coulomb: 
2
lt 2
l(l 1)
U
2mr
 (1.9) 
Bờ thế ly tâm này không lớn lắm do giảm theo hàm 
2
1
r
 trong lúc bờ thế Coulomb giảm chậm 
hơn theo hàm 
1
r
, nhưng do độ thay đổi này còn chia cho hằng số Planck trong hàm số mũ nên nó 
làm tăng đáng kể thời gian bán rã của hạt alpha. 
Bảng 1.1 Hệ số k suy giảm hằng số phân rã λ với các giá trị l = 0 – 5 đối với trường hợp E = 5 
MeV và R = 9,6.10-13 cm 
L 0 1 2 3 4 5 
K 1 0,85 0,60 0,35 0,18 0,08 
1.1.3 Phân rã beta 
Các tia beta được phát ra bởi các hạt nhân không bền khi nó phân rã phóng xạ tức thời. Một hạt 
beta có điện tích 1,6.10-19C và khối lượng rất nhỏ (0,00055 amu). Sự biến đổi hạt nhân thường phát 
ra electron năng lượng cao  và positron  . 
1.1.3.1 Phân rã beta 
Phân rã beta xảy ra khi hạt nhân phóng xạ thừa neutron, tức là tỉ số N/Z quá cao hơn đường 
cong bền của hạt nhân. Khi phân rã beta hạt nhân ban đầu ZX
A chuyển thành hạt nhân Z+1 Y
A và phát 
ra hạt eletron cùng phản hạt neutrino ν 
-A A -
Z Z 1X Y e
    (1.10) 
Hình 1.4 Phân rã beta 
Quá trình trên là kết quả của phân rã neutron thừa trong hạt nhân để biến thành proton. 
- -n p e    (1.11) 
Hình 1.5 Sơ đồ phân rã beta của Cs-137 
Sơ đồ phân rã cho thấy hạt nhân con trong quá trình phân rã beta có số nguyên tử nhỏ hơn 1 so 
với hạt nhân mẹ. 
1.1.3.2 Phân rã positron 
Hạt positron là hạt có khối lượng bằng khối lượng hạt electron song có điện tích dương +1e. 
Phân rã positron xảy ra khi hạt nhân có tỉ số N/Z quá thấp và phân rã alpha không xảy ra do không 
thỏa mãn điều kiện về năng lượng. Khi phân rã positron hạt nhân ban đầu ZX
A chuyển thành hạt 
nhân Z-1 Y
A, phát hạt positron và hạt neutrino. 
p n e
    (1.12) 
Quá trình phân rã giống với quá trình tương tác của neutrino với hạt nhân. 
A A +
Z Z-1ν + X Y + e (1.13) 
55Cs
137 
0.51 MeV (95%) β- 
1.17 MeV (5%) β- 
56Ba
137m 
56Ba
137 
β 
0.662 MeV 
γ 
Khác với electron, hạt positron không tồn tại lâu trong tự nhiên. Positron gặp electron trong 
nguyên tử và hai hạt huỷ nhau cho ra hai tia gamma có năng lượng bằng năng lượng tĩnh của 
electron 0,511 MeV. 
1.1.4 Các tính chất của phân rã beta 
- Lực tương tác: đặc điểm chính của quá trình phân rã beta là chung được gây bởi lực tương tác 
yếu. 
- Bản chất của quá trình phân rã: phân rã beta là quá trình biến đổi bên trong hạt nucleon. Đó 
chính là các quá trình phân rã neutron thành proton hay hay quá trình phân rã proton thành 
neutron. 
- Nguồn gốc các hạt bay ra từ phân rã beta: theo quan điểm lí thuyết các hạt electron, neutrino 
và các hạt khác sinh ra trong quá trình phân rã do sự tương tác của các hạt cơ bản. 
- Dãy các nguyên tố phân rã beta: dãy các nguyên tố phân rã rất rộng, từ neutron tự do đến các 
nguyên tố nặng nhất. 
- Năng lượng giải phóng khi phân rã beta: biến thiên từ 0,02 MeV đến 13,4 MeV. 
1.1.4.1 Cân bằng năng lượng trong phân rã beta 
Để xảy ra quá trình phân rã beta phải thỏa mãn các điều kiện về khối lượng như sau: 
- Phân rã β – 
Phân rã β – phải thỏa mãn quan hệ khối lượng như sau: 
M(Z,A) M(Z 1, A) m   (1.14) 
Trong đó M(Z,A) và M(Z+1,A) là khối lượng hạt nhân ZX
A và Z+1Y
A bỏ đi khối lượng các 
electron quỹ đạo, m là khối lượng electron. 
Tuy nhiên trong thực tế người ta không đo khối lượng hạt nhân mà đo khối lượng nguyên tử 
trước phân rã Mi và khối lượng sau phân rã Mf như sau 
Mi = M(Z,A) + Zm và Mf = M(Z+1,A) + (Z+1)m (1.15) 
Khi đó điều kiện phân rã beta là Mi > Mf. 
- Phân rã β + 
Đối với phân rã β + thì điều kiện về khối lượng hạt nhân là 
M(Z,A) > M(Z-1,A) + m (1.16) 
Còn điều kiện về khối lượng nguyên tử là 
 Mi > Mf + 2m (1.17) 
Trong đó Mi = M(Z,A) + Zm và Mf = M(Z - 1,A) + (Z - 1)m 
1.1.4.2 Phổ năng lượng hạt beta 
Khác với phân rã alpha, phân rã beta có hai hạt bay ra là electron và phản neutrino. Do đó 
phân bố năng lượng trong phân rã beta không chỉ quan tâm đến năng lượng tổng cộng mà cả phân 
bố năng lượng giữa hai hạt bay ra đó, ở đây ta bỏ qua năng lượng giật lùi rất bé của hạt nhân con. 
Do tính chất thống kê của quá trình phân rã nên sự phân chia năng lượng giữa electron và phản 
neutrino trong một phân rã là ngẫu nhiên, và năng lượng electron có thể có giá trị bất kì từ 0 đến 
năng lượng cực đại khả dĩ Emax. Tuy nhiên đối với một số lớn phân rã beta thì phân bố năng lượng 
của electron không phải là ngẫu nhiên mà có dạng xác định. Phân bố năng lượng này gọi là phổ 
electron của phân rã beta. 
1.1.5 Các họ phóng xạ tự nhiên phát alpha và beta 
Có 3 họ phóng xạ tự nhiên là họ Thorium (Th-232), Uranium (U-238) và Actinium (U-235). 
Chuỗi phân rã uranium chứa vài đồng vị phóng xạ, các tính chất địa hóa khác nhau của dãy đồng vị 
này làm cho các hạt nhân trong chuỗi bị cắt phân đoạn trong môi trường địa chất khác nhau. 
Uranium gồm 3 đồng vị khác nhau: khoảng 99,3% uranium thiên nhiên là U238, khoảng 0,7% 
là U235 và khoảng 0,0005% là 234U. 238U và 234U thuộc cùng một họ uranium, còn 235U là thành viên 
đầu tiên của họ actinium. 232Th là thành viên đầu tiên của họ thorium. 
Hình 1.6 Họ Thorium [10] 
Hình 1.7 Họ Uranium [10] 
Hình 1.8 Họ Actinium [10] 
Các họ phóng xạ tự nhiên có đặc điểm chung là: 
- Thành viên thứ nhất là đồng vị phóng xạ sống lâu, thời gian bán rã được tính theo đơn vị địa 
chất. 
- Mỗi họ đều có một thành viên tồn tại dưới dạng khí phóng xạ, chúng là đồng vị khác nhau của 
nguyên tố Radon: trong họ uranium là 222Rn (radon), trong họ thorium là 220Rn (thoron), trong 
họ actinium là 219Rn (actinon). 
- Sản phẩm cuối cùng của mỗi họ đều là chì: 206Pb trong họ uranium, 207Pb trong họ actinium và 
208Pb trong họ thorium. 
Tất cả các hạt nhân nặng với số khối lượng lớn hơn 209 đều phân rã alpha do năng lượng 
Coulomb tăng. Nếu số khối lượng lớn hơn giá trị 209 thì hạt nhân này chuyển thành hạt nhân bền 
bằng một số phân rã gồm phân rã α và phân rã β xen kẽ nhau. Khi phân rã α thì số khối lượng giảm 
đi 4 đơn vị còn số điện tích giảm 2 đơn vị, do đó số phần trăm của các hạt neutron tăng. Theo tính 
chất các hạt nhân bền đối với phân rã β khi A bé cần chứa số neutron với phần trăm không lớn vì 
vậy đối với hạt nhân nặng sau một vài phân rã α trở thành không bền đối với phân rã β. Do đó trong 
họ phóng xạ, các quá trình phân rã α và β xen kẽ nhau. 
1.2 Tương tác của bức xạ với vật chất 
Khi chùm tia bức xạ đi qua một môi trường vật chất thì sẽ tương tác với môi trường vật chất và 
truyền năng lượng của chúng cho electron quỹ đạo hoặc hạt nhân nguyên tử. Điều này phụ thuộc 
vào loại bức xạ, năng lượng của bức xạ và đặc tính của môi trường vật chất. Phần lớn các hạt sẽ 
tham gia tương tác Coulomb với nguyên tử là chủ yếu, tương tác gây ra theo 2 hiệu ứng sau: 
- Tán xạ Coulomb đàn hồi trên các hạt nhân nguyên tử: các hạt mang điện với năng lượng thấp 
có thể bị có thể bị tán xạ do lực Coulomb hạt nhân còn các hạt mang điện nặng có năng lượng 
cao bị tán xạ do lực hạt nhân. Quá trình trên làm cho chùm hạt tới bị lệch đi so với hướng 
chuyển động ban đầu, do có khối lượng lớn hơn nhiều so với electron nên hướng chuyển động 
của các hạt nặng khi va chạm thay đổi không đáng kể. Sự mất năng lượng của hạt do hiệu ứng 
này là nhỏ hơn nhiều so với tiêu hao năng lượng ion hóa. 
- Ion hóa và kích thích các nguyên tử của môi trường: đây là kết quả của quá trình va chạm 
không đàn hồi của hạt mang điện với các electron trên lớp vỏ nguyên tử. Năng lượng của hạt 
mang điện đã bị tiêu tốn để ion hóa và kích thích các nguyên tử của vật chất được gọi là độ 
mất năng lượng riêng. Đối với hạt mang điện ion hóa là nguyên nhân cơ bản làm tiêu hao năng 
lượng của hạt. 
1.2.1 Tương tác của bức xạ alpha với vật chất [11] 
1.1.2.6 Độ mất năng lượng do ion hóa và kích thích nguyên tử 
Tương tác chủ yếu của hạt nặng có điện tích với môi trường là va chạm không đàn hồi với 
nguyên tử và phân tử của môi trường. Một trong các đại lượng vật lý đặc trưng cho sự truyền qua 
môi trường của các hạt mang điện là độ mất năng lượng. Theo định nghĩa độ mất năng lượng riêng 
là năng l