Khoa học và công nghệ là đặc trưng của thời đại, nghiên cứu khoa học đã trở thành
hoạt động sôi nổi và rộng khắp trên phạm vi toàn cầu. các thành tựu của khoa học hiện đại
đã làm thay đổi bộ mặt thế giới. Khoa học và công nghệ đã trở thành động lực thúc đẩy sự
tiến bộ nhân loại. Cùng với nghiên cứu khoa học hiện đại, mọi người đang chú ý đến
phương pháp nhận thức khoa học, coi đó là nhân tố quan trọng để phát triển khoa học.
Theo Gaudin, chúng ta không thể bằng lòng với vốn kiến thức quá hạn hẹp thu
nhận được trong những năm ngồi trên ghế nhà trường, mà phải học suốt đời, phải có đủ
vốn kiến thức về phương pháp để tự mình học tập suốt đời.
Kiến thức về phương pháp có thể được tích lũy trong kinh nghiệm lao động hay
được tích lũy trong quá trình nghiên cứu các khoa học cụ thể, song bản thân phương pháp
cũng có một hệ thống lý thuyết của riêng mình.
Trong phạm vi của bài thu hoạch nhỏ này, chúng em sẽ trình bày một số vấn đề về
phương pháp nghiên cứu khoa học nói chung và đặc biệt là trong ngành tin học. Qua đây,
chúng em cũng xin được gửi lời cảm ơn đến Giáo sư - Tiến sĩ Khoa học Hoàng Kiếm,
người đã tận tâm truyền đạt những kiến thức nền tảng cơ bản cho chúng em về môn học
“Phương pháp nhiên cứu khoa học trong tin học”. Bên cạnh đó cũng không thể không
nhắc đến công lao trợ giúp của các chuyên gia cố vấn qua mạng thuộc Trung tâm phát
triển CNTT – ĐH Quốc gia TP.HCM và toàn thể các bạn bè học viên trong lớp.
32 trang |
Chia sẻ: lvbuiluyen | Lượt xem: 4051 | Lượt tải: 3
Bạn đang xem trước 20 trang tài liệu Đề tài Ứng dụng tin học trong dự báo và phân tích dữ liệu tài chính, chứng khoán, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN
LỚP CAO HỌC CNTT QUA MẠNG – KHÓA 6
BÀI THU HOẠCH
MÔN HỌC: PHƯƠNG PHÁP NGHIÊN CỨU KHOA HỌC TRONG TIN HỌC
ĐỀ TÀI:
ỨNG DỤNG TIN HỌC
TRONG DỰ BÁO VÀ PHÂN TÍCH
DỮ LIỆU TÀI CHÍNH, CHỨNG KHOÁN
Giảng viên: GS TSKH Hoàng Kiếm
Sinh viên thực hiện: Nguyễn Hoàng Hạc
MSSV: CH1101081
TP. HCM, NĂM 2012
2
Mở đầu
Khoa học và công nghệ là đặc trưng của thời đại, nghiên cứu khoa học đã trở thành
hoạt động sôi nổi và rộng khắp trên phạm vi toàn cầu. các thành tựu của khoa học hiện đại
đã làm thay đổi bộ mặt thế giới. Khoa học và công nghệ đã trở thành động lực thúc đẩy sự
tiến bộ nhân loại. Cùng với nghiên cứu khoa học hiện đại, mọi người đang chú ý đến
phương pháp nhận thức khoa học, coi đó là nhân tố quan trọng để phát triển khoa học.
Theo Gaudin, chúng ta không thể bằng lòng với vốn kiến thức quá hạn hẹp thu
nhận được trong những năm ngồi trên ghế nhà trường, mà phải học suốt đời, phải có đủ
vốn kiến thức về phương pháp để tự mình học tập suốt đời.
Kiến thức về phương pháp có thể được tích lũy trong kinh nghiệm lao động hay
được tích lũy trong quá trình nghiên cứu các khoa học cụ thể, song bản thân phương pháp
cũng có một hệ thống lý thuyết của riêng mình.
Trong phạm vi của bài thu hoạch nhỏ này, chúng em sẽ trình bày một số vấn đề về
phương pháp nghiên cứu khoa học nói chung và đặc biệt là trong ngành tin học. Qua đây,
chúng em cũng xin được gửi lời cảm ơn đến Giáo sư - Tiến sĩ Khoa học Hoàng Kiếm,
người đã tận tâm truyền đạt những kiến thức nền tảng cơ bản cho chúng em về môn học
“Phương pháp nhiên cứu khoa học trong tin học”. Bên cạnh đó cũng không thể không
nhắc đến công lao trợ giúp của các chuyên gia cố vấn qua mạng thuộc Trung tâm phát
triển CNTT – ĐH Quốc gia TP.HCM và toàn thể các bạn bè học viên trong lớp.
3
MỤC LỤC
Mở đầu ..................................................................................................... 2
PHẦN I: GIỚI THIỆU ............................................................................. 5
I. Cơ sở lý thuyết về dự báo bằng phương pháp định lượng ............................................ 5
I.1. Dự báo chuỗi thời gian ........................................................................................... 5
I.2. Dự báo mô hình nhân quả ...................................................................................... 8
II. Ứng dụng phương pháp định lượng dự báo trên thị trường chứng khoán ................... 8
II.1. Dự báo chuỗi thời gian ......................................................................................... 9
II.2. Dự báo bằng mô hình nhân quả ............................................................................ 9
II.3. Dự báo bằng mạng thần kinh (Neural Network) ................................................ 10
PHẦN II: MÔ HÌNH ARIMA ............................................................... 12
I. Mô hình ARIMA ......................................................................................................... 12
I.1. Hàm tự tương quan ACF...................................................................................... 12
I.2. Hàm tự tương quan từng phần PACF .................................................................. 14
II. Mô hình AR(p) ........................................................................................................... 17
III. Mô hình MA(q) ......................................................................................................... 18
IV. Sai phân I(d) ............................................................................................................. 18
V. Mô hình ARIMA ....................................................................................................... 19
VI. Các bước phát triển mô hình ARIMA ...................................................................... 20
VI.1. Xác định mô hình: ............................................................................................. 20
VI.2. Ước lượng tham số: ........................................................................................... 20
VI.3. Kiểm định độ chính xác: ................................................................................... 20
VI.4. Dự báo : ............................................................................................................. 21
4
PHẦN III: ÁP DỤNG MÔ HÌNH ARIMA VÀO BÀI TOÁN PHÂN
TÍCH DỮ LIỆU CHỨNG KHOÁN ..................................................... 22
I. Mô hình ARIMA cho dự báo tài chính, chứng khoán ................................................ 22
I.1. Dữ liệu tài chính ................................................................................................... 22
I.2. Mô hình ARIMA cho bài toán dự báo tài chính .................................................. 22
I.3. Thiết kế mô hình ARIMA cho dữ liệu ................................................................. 23
I.3.1 Chọn tham biến ........................................................................................................................23
I.3.2 Chuẩn bị dữ liệu .......................................................................................................................23
I.3.3 Xác định thành phần p, q trong mô hình ARMA ......................................................................24
I.3.4 Ước lượng các thông số của mô hình và kiểm định mô hình phù hợp nhất ............................24
I.3.5 Kiểm tra mô hình phù hợp nhất ...............................................................................................24
I.3.6 Dự báo ngắn hạn mô hình ........................................................................................................25
II. Áp dụng ...................................................................................................................... 25
II.1. Dữ liệu ................................................................................................................ 25
II.2. Nhận dạng mô hình ............................................................................................. 26
II.3. Ước lượng và kiểm định với mô hình ARIMA .................................................. 27
II.4. Thực hiện dự báo ................................................................................................ 30
II.5. Kết luận ............................................................................................................... 31
Tài liệu tham khảo: ........................................................................... 32
5
PHẦN I: GIỚI THIỆU
Dự báo giá cổ phiếu, biến động của thị trường là một chủ đề thú vị, thu hút được
sự quan tâm của nhiều nhà đầu tư, chuyên gia, nhà khoa học. Hiện nay, nhiều phương
pháp dự báo đã được phát triển để dự báo xu hướng biến động giá cổ phiếu, thị trường
hoặc tìm kiếm các cổ phiếu tiềm năng để đầu tư. Ở Việt Nam, phương pháp phân tích và
dự báo được nhiều người biết đến nhất là phân tích kỹ thuật và phân tích cơ bản. Bên
cạnh đó, phương pháp phân tích và dự báo bằng định lượng thông quá các mô hình toán
học đang dần được quan tâm.
Trong tiểu luận này tôi giới thiệu những nguyên tắc cơ bản về phương pháp dự báo
định lượng. Tôi cho rằng đây là một phương pháp khá hiệu quả và giúp hạn chế những
khiếm khuyết của 2 phương pháp dự báo phổ biến phân tích kỹ thuật và phân tích cơ bản.
Dự báo thị trường bằng phương pháp định lượng được sử dụng một cách khá phổ biến
trên thế giới. Nhiều quỹ đầu tư đã thiết lập các hệ thống giao dịch tự động bằng phương
pháp định lượng (quantitative trading). Hiệu quả từ phương pháp này đã được chứng
minh tại rất nhiều thị trường. Ưu điểm của phương pháp dự báo định lượng là những tín
hiệu đưa khá khách quan, dựa vào tiêu chí của những chỉ tiêu thống kê từ mô hình. Những
tín hiệu mua bán được đưa ra dựa trên những phân tích khách quan nên giảm thiểu sự sai
sót do yếu tố con người. Dù vậy, nếu lạm dụng quá mức phương pháp này thì cũng sẽ tạo
ra những hệ quả xấu.
I. Cơ sở lý thuyết về dự báo bằng phương pháp định lượng
Các phương pháp định lượng dùng để dự báo dựa trên các mô hình toán với giả
định rằng mối liên hệ giữa các yếu tố được thiết lập trong quá khứ sẽ lặp lại trong tương
lai. Nói cách khác phương pháp định lượng dựa trên dữ liệu quá khứ để phát hiện chiều
hướng vận động trong tương lai của các yếu tố theo một quy luật nào đó. Để dự báo diễn
biến trong tương lai của một biến, người ta có thể sử dụng mô hình chuỗi thời gian hoặc
sử dụng biến nhân quả. Ngoài ra, người ta còn sử dụng phương pháp khá phức tạp là
Neural Network.
I.1. Dự báo chuỗi thời gian
Các mô hình dự báo chuỗi thời gian là dự báo giá trị tương lai của một biến số nào
đó, bằng cách phân tích số liệu quá khứ và hiện tại của những biến số đó. Giả định của dự
báo chuỗi thời gian là sự vận động trong tương lại của biến dự báo sẽ giữ nguyên xu thế
vận động trong quá khứ và hiện tại. Như vậy, chỉ có chuỗi ổn định mới đưa ra được
6
những dự báo tin cậy. Tính ổn định của chuỗi dữ liệu thể hiện qua tính “dừng”, đây là
điều kiện quan trọng để phân tích và dự báo chuỗi thời gian.
Dự báo quá khứ gọi là dự báo hậu nghiệm và dự báo các giai đoạn trong tương lai
gọi là dự báo tiền nghiệm.
Toàn bộ dự báo được phân chia làm 2 giai đoạn là dự báo hậu nghiệm (ex-post) và
dự báo tiền nghiệm (ex-ante).
- Giai đoạn dự báo hậu nghiệm: Là thời gian từ quan sát đầu tiên sau khi chấm dứt
giai đoạn mẫu Yn+1 tới quan sát mới nhất YN. Giai đoạn hậu nghiệm là giai đoạn kiểm
nghiệm sự chính xác tính dự báo của mô hình. Nếu như mô hình không đảm bảo độ chính
xác theo yêu cầu thì lúc đó người dự báo cần tìm các giải pháp khác như tìm kiếm mô
hình thay thế hoặc mở rộng mẫu dự báo.
- Giai đoạn dự báo tiền nghiệm: Là giai đoạn dự báo tương lai. Đây chính là mục
tiêu của dự báo, nhưng vì chưa xảy ra nên không thể so sánh được. Tuy vậy, một số tiêu
chí thống kê sẽ cho chúng ta đánh giá được mức độ tin cậy của mô hình.
Toàn bộ quá trình dự báo được tóm tắt ở sơ đồ sau:
7
8
I.2. Dự báo mô hình nhân quả
Mô hình dự báo này dựa trên sự tác động qua lại giữa các yếu tố với nhau, trong đó
biến dự báo (biến phụ thuộc) có quan hệ nhân quả với các biến khác (biến độc lập).
Để thực hiện được dự báo theo mô hình nhân quả người làm dự báo dựa trên các lý
thuyết về kinh tế, tài chính, các nghiên cứu thực nghiệm có liên quan, kinh nghiệm thực
tế. Trước khi xây dựng mô hình người làm dự báo phải thiết lập các cơ sở lý thuyết, mối
liên hệ giữa biến phụ thuộc (biến dự báo) và biến số khác (biến độc lập). Sau khi xác định
các bước trên sẽ cần phải tiến hành thu thập dữ liệu, xây dựng, ước lượng mô hình, kiểm
định giả thuyết và cuối cùng là thực hiện dự báo.
II. Ứng dụng phương pháp định lượng dự báo trên thị trường
chứng khoán
Chúng ta vừa tìm hiểu các nguyên lý chung nhất về dự báo kinh tế. Sự biến động
của thị trường chứng khoán phản ánh sức khỏe của nền kinh tế và kỳ vọng của nhà đầu tư.
9
Cơ sở lý thuyết cho việc dự báo biến động của thị trường chứng khoán đã được chứng
minh khá rộng rãi. Nhiệm vụ của nhà dự báo là thiết lập các mô hình để có thể dự báo
những xu thế thị trường trong tương lai.
Thực tế chúng ta phải chấp nhận rằng không có một mô hình nào là hoàn hảo để
dự báo mọi sự biến động của thị trường. Việc dự báo bằng định lượng có thể sai sót khi
gặp những cú sốc của các biến số ngoài mô hình khiến thị trường đảo chiều một cách đột
ngột. Ngoài ra, nếu nguồn dữ liệu đầu vào không được thu thập một cách khoa học, chính
xác cũng có thể làm cho tính dự báo thiếu chính xác.
Tại Việt Nam, nghiên cứu định lượng để dự báo thị trường chứng khoán xuất hiện
chưa nhiều. Nguyên nhân chính là lực lượng những người làm dự báo có đủ trình độ
chuyên môn để thực hiện những phép toán phức tạp là khá ít. Ngoài ra, do số liệu về kinh
tế, doanh nghiệp và thị trường chưa đủ dài và độ tin cậy chưa cao nên việc thực hiện các
dự báo trở nên khó khăn hơn.
Dưới đây, Tôi xin đưa ra một số phương pháp dự báo như sau:
II.1. Dự báo chuỗi thời gian
Sử dụng chuỗi thời gian để dự báo giá cổ phiếu hoặc các chỉ số thị trường được sử
dụng khá nhiều. Phương pháp dự báo này có ưu điểm là chỉ sử dụng số liệu theo chuỗi
thời gian nên khá phù hợp cho dự báo thị trường chứng khoán. Tuy nhiên, nhược điểm
của nó là không hiệu quả trong việc dự báo được xu thế dài hạn của thị trường.
Mô hình chuỗi thời gian thường được sử dụng nhất là mô hình ARIMA và phương
pháp Box-Jenkins. Mô hình ARIMA (Autoregressive Integrated Moving Average - Tự
hồi qui tích hợp Trung bình trượt), được George Box và Gwilym Jenkins (1976) nghiên
cứu. Phương pháp Box-Jenkins bao gồm bốn bước: nhận dạng mô hình thử nghiệm; ước
lượng; kiểm định bằng chẩn đoán; và dự báo.
Mô hình sử dụng để dự báo rủi ro ARCH/GARCH. ARCH/GARCH được sử dụng
khá phổ biến trong ngành tài chính để dự báo rủi ro. Mô hình này dùng để dự báo độ giao
động suất sinh lời của cổ phiếu theo thời gian. Mô hình ARCH (Autogressive Conditional
Heteroskedasticity) do Robert Engle và Clive Granger phát triển năm 1982. Mô hình
GARCH (Generalised Autogressive Conditional Heteroskedasticity) được Tim Bollerslev
đề xuất năm 1986 để khắc phục những hạn chế của ARCH. Ngày nay, GARCH được sử
dụng một cách phổ biến và phù hợp với số liệu chuỗi thời gian ngắn như giá cổ phiếu trên
thị trường.
II.2. Dự báo bằng mô hình nhân quả
10
Mô hình nhân quả thường sử dụng số liệu bảng. Trong dự báo chứng khoán, biến
phụ thuộc (biến cần dự báo) là suất sinh lời của cổ phiếu, thị trường hay giá cổ phiếu và
chỉ số thị trường. Trong khi đó, các biến độc lập là các biến số của nền kinh tế như lạm
phát, thất nghiệp, cung tiền, tăng trưởng công nghiệp, tăng trưởng bán lẻ, niềm tin tiêu
dùng … hoặc là các biến số liên quan đến doanh nghiệp như lợi nhuận, tăng trưởng, giá
hàng hóa liên quan đến quá trình sản xuất của doanh nghiệp. Nói tóm lại là bất kỳ yếu tố
nào tác động đến sự biến động của thị trường, giá cổ phiếu đều có thể trở thành biến độc
lập sử dụng cho dự báo.
Phương pháp này sử dụng các mô hình hồi quy để tìm mối liên hệ giữa biến phụ
thuộc và biến độc lập. Qua mô hình hồi quy, chúng ta có thể dự báo được xu thế và những
nhân tố tác động đến biến động của giá chứng khoán hay thị trường.
Ưu điểm của phương pháp này là có thể dự báo một cách khá chính xác xu hướng
biến động dài hạn của giá cổ phiếu hay thị trường. Tuy nhiên, việc thu thập dữ liệu là một
công việc khó khăn và tốn nhiều chi phí. Đối với Việt Nam, do các dữ liệu về doanh
nghiệp và nền kinh tế còn ít nên áp dụng phương pháp dự báo này càng trở nên khó khăn.
II.3. Dự báo bằng mạng thần kinh (Neural Network)
Lý thuyết Neural Network được phát triển từ những năm 1940 đến nay và đã được
ứng dụng rộng rãi trong nhiều lĩnh vực. Lý thuyết Neural Network nhanh chóng trở thành
một hướng nghiên cứu triển vọng trong mục đích xây dựng các máy thông minh tiến gần
tới trí tuệ con người. Đối với lĩnh vực chứng khoán, Neural Network được sử dụng để dự
báo thị trường, giá cổ phiếu. Neural Network được xây dựng xuất phát từ một thực tế là
bộ não con người. Có thể coi bộ não là một máy tính hay một hệ thống xử lý thông tin
song song, phi tuyến và cực kỳ phức tạp. Bộ não có khả năng tự tổ chức các bộ phận cấu
thành của nó, như là các tế bào thần kinh (neural) hay các khớp nối thần kinh (synapse),
nhằm thực hiện một số tính toán như nhận dạng mẫu và điều khiển vận động nhanh hơn
nhiều lần các máy tính nhanh nhất hiện nay. Sự mô phỏng bộ não con người của mạng
neural được dựa trên cơ sở một số tính chất đặc thù rút ra từ các nghiên cứu về thần kinh
sinh học.
Dữ liệu đầu vào để thực hiện dự báo bằng Neural Network khá đa dạng và tùy
thuộc vào trình độ, kinh nghiệm, mục tiêu dự báo và những cơ sở dữ liệu mà người làm
dự báo có. Thông thường dữ liệu bao gồm các dữ liệu liên quan đến giao dịch cổ phiếu
trên thị trường như giá, khối lượng…. Ngoài ra, các dữ liệu trong nền kinh tế, dữ liệu của
doanh nghiệp cũng có thể làm đầu vào cho quá trình dự báo. Các thông tin đầu vào sẽ
được xử lý bằng những thuật toán phức tạp thông qua tiến trình mô phỏng việc xử lý
thông tin như bộ não con người.
11
Hiện nay, có khá nhiều phần mền miễn phí về Neural Network được đăng tải trên
mạng Internet. Tuy nhiên việc vận dụng thành thạo để dự báo thị trường là một công việc
không dễ dàng. Để làm được điều này người dự báo cần phải có hàng loạt các kiến thức
sâu rộng khác để bổ trợ.
Trên đây tôi vừa giới thiệu những cơ sở lý thuyết và một số phương thức phổ biến
sử dụng để dự báo trên thị trường chứng khoán. Ưu điểm của các phương pháp định
lượng này là phân tích số liệu để đưa ra được những dự báo khách quan, để giảm thiểu rủi
ro của việc phân tích cảm tính của con người. Tuy nhiên, áp dụng phương pháp định
lượng trong dự báo sẽ có không ít thách thức và nó cũng không phải là phương pháp thay
thế hoàn toàn trực giác trong đầu tư.
Tôi cho rằng đây là một hướng phát triển trong tương lai đối với công tác dự báo
với dự báo thị trường chứng khoán Việt Nam. Tuy vậy, đây là công việc khó khăn và
phức tạp, đòi hỏi người làm công tác dự báo cần có trình độ chuyên môn về kinh tế, tài
chính, toán học và kinh nghiệm dự báo.
Kết quả nghiên cứu bước đầu cho thấy phương pháp định lượng hoàn toàn có thể
áp dụng để dự báo đối với thị trường Việt Nam. Sử dụng phương pháp định lượng dự báo
thị trường khá hiệu quả và hiệu quả càng tăng lên khi kết hợp với các phương pháp dự
báo khác
12
PHẦN II: MÔ HÌNH ARIMA
I. Mô hình ARIMA
I.1. Hàm tự tương quan ACF
Hàm tự tương quan đo lường phụ thuộc tuyến tính giữa các cặp quan sát y(t) và
y(t+k), ứng với thời đoạn k = 1, 2, …(k còn gọi là độ trễ). Với mỗi độ trễ k, hàm tự tương
quan tại độ trễ k được xác định qua độ lệch giữa các biến ngẫu nhiên Yt. Yt+k so với các
giá trị trung bình, và được chuẩn hóa qua phương sai.
Dưới đây, giả thiết rằng các biến ngẫu nhiên trong chuỗi dừng thay đổi quanh giá
trị trung bình với phương sai hằng số . Hàm tự tương quan tại các độ trễ khác nhau sẽ
có giá trị khác nhau.
Trong thực tế, ta có thể ước lượng hàm tự tương quan tại độ trễ thứ k qua
phép biến đổi trung bình của tất cả các cặp quan sát, phân biệt bằng các độ trễ k,
với giá trị trung bình mẫu là , được chuẩn hóa bởi phương sai 2.Chẳng hạn, cho mỗi
chuỗi N điểm, giá trị rk của hàm tự tương quan tại độ trễ thứ k được tính như sau :
∑
với:
∑
∑
yt: chuỗi thời gian dừng tại thời điểm t
yt+k : chuỗi thời gian dừng tại thời điểm t +k
^ : giá trị trung bình của chuỗi dừng
rk : giá trị tương quan giữa yt và yt+k tại độ trễ k
rk = 0 thì không có hiện tượng tự tương quan
Về mặt lý thuyết, chuỗi dừng khi tất cả các rk = 0 hay chỉ vài rk khác không. Do
chúng ta xem xét hàm tự tương quan mẫu, do đó sai số mẫu sẽ xuất hiện vì vậy, hiện
tượng tự tương quan khi rk = 0 theo ý nghĩa thống kê.
13
Khi hàm tự tương quan ACF giảm đột ngột, có nghĩa rk rất lớn ở độ trễ 1, 2 và có ý
nghĩa thống kê (|t| >2). Những rk này được xem là những “đỉnh” và ta nói rằng hàm tự
tương quan ACF giảm đột ngột sau độ trễ k nếu không có những “đỉnh” ở độ trễ k lớn
hơn k. Hầu hết hàm tự tương quan ACF sẽ giảm đột ngột sau độ trễ 1, 2.
Nếu hàm tự tương quan ACF của chuỗi thời gian không dừng không giảm đột ngột
mà trái lại giảm nhanh nhưng đều: không có đỉnh, ta gọi chiều hướng này là “tắt dần”.
Hàm tự tương quan ACF có thể “tắt dần” trong vài dạng sau :
Dạng phân phối mẫu
14
Dạng sóng sin
Hoặc kết hợp cả hai dạng trên.
Sự khác nhau giữa hiện tượng “tắt dần” nhanh và “tắt dần” chậm đều được phân
biệt khá tùy tiện.
I.2. Hàm tự tương quan từng phần PACF
Song song với việc xác định hàm tự tương quan giữa các cặp y(t) và y(t+k), ta xác
định hàm tự tương quan từng phần cũng