Lí thuyết về các không gian Banach với thứ tự sinh bởi nón và các phương trình
trong chúng được hình thành từ những năm 1940 và được tổng kết bước đầu trong bài
báo [35] của M.G.Krein và M.A.Rutman. Nó được phát triển mạnh mẽ và đạt được
những kết quả sâu sắc cả về mặt lí thuyết lẫn mặt ứng dụng trong giai đoạn 1950–
1980 trong các công trình của M.A.Krasnoselskii và các học trò của ông [30, 31], của
E.N.Dancer, P.Rabinowitz, R.Nussbaum, W.V.Petryshyn,. [1, 12, 13, 44]. Lý thuyết
này tiếp tục hoàn thiện cho đến tận hôm nay với những ứng dụng rộng rãi trong các lĩnh
vực truyền thống (Lí thuyết phương trình vi phân, tích phân; các phương trình xuất
phát từ Vật lí, Hoá học, Sinh học) và các lĩnh vực mới (Lí thuyết điều khiển, Tối ưu
hoá, Y học, Kinh tế học, Ngôn ngữ học,.)
105 trang |
Chia sẻ: lecuong1825 | Lượt xem: 1584 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận án Một số lớp phương trình trong không gian banach có thứ tự, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
------------------------------
VÕ VIẾT TRÍ
MỘT SỐ LỚP PHƯƠNG TRÌNH
TRONG KHÔNG GIAN BANACH CÓ
THỨ TỰ
LUẬN ÁN TIẾN SĨ TOÁN HỌC
THÀNH PHỐ HỒ CHÍ MINH - 2016
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
------------------------------
VÕ VIẾT TRÍ
MỘT SỐ LỚP PHƯƠNG TRÌNH
TRONG KHÔNG GIAN BANACH CÓ
THỨ TỰ
Chuyên ngành: Toán Giải Tích
Mã số: 62 46 01 02
LUẬN ÁN TIẾN SĨ TOÁN HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC
PGS.TS NGUYỄN BÍCH HUY
THÀNH PHỐ HỒ CHÍ MINH - 2016
Mục lục
1 PHƯƠNG TRÌNH TRONG KHÔNG GIAN VỚI K-CHUẨN 10
1.1 Không gian với thứ tự sinh bởi nón, không gian với K-chuẩn. . . . . . . 11
1.2 Định lý điểm bất động kiểu Krasnoselskii trong không gian với K-chuẩn
nhận giá trị trong không gian Banach. . . . . . . . . . . . . . . . . . . 13
1.3 Định lý điểm bất động kiểu Krasnoselskii trong không gian với K-chuẩn
nhận giá trị trong không gian lồi địa phương. . . . . . . . . . . . . . . 18
1.3.1 Trường hợp không gian lồi địa phương xác định bởi họ nửa chuẩn. 18
1.3.2 Trường hợp không gian lồi địa phương xác định bởi cơ sở lân cận
gốc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4 Ứng dụng vào bài toán Cauchy trong thang không gian Banach. . . . . 31
1.4.1 Trường hợp bài toán không nhiễu. . . . . . . . . . . . . . . . . . 32
1.4.2 Trường hợp bài toán có nhiễu. . . . . . . . . . . . . . . . . . . . 35
2 ÁNH XẠ CÔ ĐẶC THEO ĐỘ ĐO PHI COMPACT VỚI GIÁ TRỊ
TRONG NÓN 44
2.1 Độ đo phi compact, ánh xạ cô đặc và định lý điểm bất động. . . . . . . 44
2.1.1 Độ đo phi compact nhận giá trị trong nón. . . . . . . . . . . . . 44
2.1.2 Ánh xạ cô đặc theo một độ đo và định lý điểm bất động. . . . . 47
2.2 Ứng dụng vào phương trình vi phân có chậm trong không gian Banach. 49
3 PHƯƠNG TRÌNH VỚI ÁNHXẠĐA TRỊ CHỨA THAM SỐ TRONG
1
2KHÔNG GIAN CÓ THỨ TỰ 53
3.1 Bậc tôpô tương đối của lớp ánh xạ đa trị cô đặc. . . . . . . . . . . . . . 54
3.1.1 Tính nửa liên tục và compact của ánh xạ đa trị. . . . . . . . . . 54
3.1.2 Bậc tôpô tương đối. . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.3 Tính bậc tôpô tương đối cho một số lớp ánh xạ và ứng dụng vào
bài toán điểm bất động. . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Phương trình với ánh xạ đa trị chứa tham số có chặn dưới đơn điệu. . . 67
3.2.1 Tính liên tục của tập nghiệm dương của phương trình. . . . . . 67
3.2.2 Khoảng giá trị tham số để phương trình có nghiệm: . . . . . . . 71
3.2.3 Ứng dụng vào một dạng bài toán điều khiển. . . . . . . . . . . . 73
3.3 Bài toán giá trị riêng, véc tơ riêng dương. . . . . . . . . . . . . . . . . . 79
3.3.1 Sự tồn tại véctơ riêng và giá trị riêng dương. . . . . . . . . . . . 81
3.3.2 Một số tính chất Krein-Rutman của giá trị riêng dương, véc tơ
riêng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3MỞ ĐẦU
Lí thuyết về các không gian Banach với thứ tự sinh bởi nón và các phương trình
trong chúng được hình thành từ những năm 1940 và được tổng kết bước đầu trong bài
báo [35] của M.G.Krein và M.A.Rutman. Nó được phát triển mạnh mẽ và đạt được
những kết quả sâu sắc cả về mặt lí thuyết lẫn mặt ứng dụng trong giai đoạn 1950–
1980 trong các công trình của M.A.Krasnoselskii và các học trò của ông [30, 31], của
E.N.Dancer, P.Rabinowitz, R.Nussbaum, W.V.Petryshyn,... [1, 12, 13, 44]. Lý thuyết
này tiếp tục hoàn thiện cho đến tận hôm nay với những ứng dụng rộng rãi trong các lĩnh
vực truyền thống (Lí thuyết phương trình vi phân, tích phân; các phương trình xuất
phát từ Vật lí, Hoá học, Sinh học) và các lĩnh vực mới (Lí thuyết điều khiển, Tối ưu
hoá, Y học, Kinh tế học, Ngôn ngữ học,...) [2, 3, 9, 10, 18, 22, 23, 24, 25, 47, 48, 49, 50].
Hướng nghiên cứu tiếp theo của Lí thuyết phương trình trong không gian có thứ tự
cũng giống các lĩnh vực Toán học khác, có lẽ sẽ đi theo hai hướng. Một mặt tiếp tục
phát triễn lí thuyết cho các lớp phương trình mới trong không gian thứ tự, mặt khác
ứng dụng lí thuyết vào giải quyết các bài toán của các lĩnh vực khác mà ban đầu có
thể không liên quan đến các phương trình trong không gian thứ tự.
Trong luận án này, chúng tôi sẽ trình bày các kết quả nghiên cứu của mình theo hai
hướng nêu trên, đó là nghiên cứu một số lớp phương trình với ánh xạ đa trị tổng quát
chứa tham số trong không gian có thứ tự và sử dụng chuẩn nón, độ đo phi compact
với giá trị trong nón để nghiên cứu phương trình trong không gian có thể không có thứ
tự. Dưới đây chúng tôi sẽ nêu các kết quả chính của luận án, mối liên quan của chúng
với các kết quả của các tác giả khác.
I. Sử dụng chuẩn nón và độ đo phi compact với giá trị trong nón để
nghiên cứu các phương trình.
Quan hệ thứ tự được sử dụng một cách tự nhiên trong nghiên cứu phương trình vi
phân, tích phân (nhờ Nguyên lí Maximum, bổ đề Gronwal,...), trong Lí thuyết điểm
bất động (sử dụng tính đơn điệu của ánh xạ để giảm nhẹ hoặc bỏ điều kiện liên tục,
4compact hoặc xây dựng dãy lặp đơn điệu hội tụ về nghiệm,...). Ngay cả trong các vấn
đề tưởng chừng không liên quan đến thứ tự thì việc đưa vào một thứ tự thích hợp sẽ
làm cho việc giải quyết bài toán đó được sáng rõ hơn, ngắn gọn hơn. Ta có thể thấy
điều này qua chứng minh định lý Hahn-Banach, định lý Tychonoff về tích các không
gian compact (sử dụng Bổ đề Zorn), định lý điểm bất động của Caristi, Nguyên lí biến
phân Ekeland (với việc xây dựng thứ tự thích hợp).
Không gian với metric nón hoặc chuẩn nón (cũng còn gọi là không gian K-metric,
không gian K-chuẩn) là một mở rộng tự nhiên của các không gian metric, định chuẩn
thông thường khi metric hoặc chuẩn nhận giá trị trong nón dương của một không gian
có thứ tự. Chúng được đưa vào nghiên cứu từ những năm 1950 và được ứng dụng trong
Giải tích số, Phương trình vi phân, Lí thuyết điểm bất động,... trong các công trình
của Kantorovich [32, 33, 34], Collatz [11], P.Zabreiko và các học trò với các kết quả
được tổng kết trong [55].
Ta có thể thấy sự hữu ích của việc sử dụng không gian với chuẩn nón qua ví dụ
sau. Giả sử ta có không gian định chuẩn thông thường (X; q) và ta muốn tìm điểm bất
động của ánh xạ T : X ! X. Trong một số trường hợp ta có thể tìm được không gian
Banach (E; k:k) với thứ tự sinh bởi nón chuẩn K E; ánh xạ tuyến tính dương liên
tục Q : E ! E và chuẩn nón p : X ! K sao cho q (x) = kp (x)k và
p (T (x) T (y)) Q [p (x y)] , x; y 2 X: (1)
Từ (1) ta có
kp (T (x) T (y))k N: kQk : kp (x y)k :
Như vậy, 9k > 0 để
q (T (x) T (y)) kq (x y) , x; y 2 X (2)
Nếu chỉ làm việc trong (X; q) với tính chất (2) thì ta có được ít thông tin hơn khi
làm việc với (1) vì từ (1) ta có thể sử dụng các tính chất của ánh xạ tuyến tính dương
đã được tìm ra trong Lí thuyết phương trình trong không gian có thứ tự.
Gần đây, các nghiên cứu về điểm bất động trong không gian với nón metric sôi
5động trở lại sau bài báo [20] (ta có thể tham khảo bài báo tổng quan [27] về các nghiên
cứu gần đây với liệt kê hơn 100 bài báo, tuy chưa đầy đủ). Tuy nhiên, các tác giả của
bài báo [20] và phần lớn của các bài tiếp theo đã không biết các nghiên cứu về đề tài
này trong giai đoạn trước; các kết quả của họ cũng không tổng quát hơn và cũng chỉ
mang tính lí thuyết. Các nghiên cứu về điểm bất động trong không gian với metric
nón ở giai đoạn trước và gần đây cũng chỉ tập trung vào Nguyên lí Cacciopoli-Banach
và các mở rộng của nó. Cho đến thời điểm chúng tôi gởi đăng bài báo [TG1] chúng tôi
chưa thấy kết quả nào về mở rộng định lý Krasnoslskii về điểm bất động của tổng ánh
xạ co và ánh xạ compact cho không gian với chuẩn nón.
Trong chương 1 của luận án, chúng tôi trình bày các kết quả về định lý điểm bất
động kiểu Krasnoselskii cho ánh xạ T + S trong không gian với chuẩn nón cho hai
trường hợp. Trong trường hợp chuẩn nhận giá trị trong không gian Banach chúng tôi
đặt điều kiện (1) lên ánh xạ T . Trường hợp chuẩn nhận giá trị trong không gian lồi
địa phương E thì ánh xạ T thoả mãn điều kiện dạng
p (T nz (x) T nz (y)) Qnp (x y) , 8x; y; z 2 X;n 2 N
với Qn : E ! E là dãy ánh xạ dương, liên tục và Tz (x) = T (x) + z.
Các kết quả trừu tượng được chúng tôi áp dụng vào khảo sát bài toán Cauchy
x0 (t) = f [t; x (t)] + g [t; x (t)] (3)
trong thang các không gian Banach (Fs; k:ks), s 2 (0; 1]:
Sự tồn tại nghiệm của (3) (cũng còn gọi là định lý Cauchy-Kovalevkaya trừu tượng)
với f thoả điều kiện Lipschitz dạng Ovcjannikov: kf (t; u) f (t; v)ks Cku vkr(r s) , 0 <
s < r 1 và g (t; u) = 0, đã được nghiên cứu bởi F.Treves, L.Ovcjannikov, L.Nirenber,
T.Nishida,... [38, 39, 40, 45], còn trong trường hợp g là ánh xạ compact, bài toán được
H.Begehr [7], M.Ghisi [16], nghiên cứu. Các tác giả đã xây dựng dãy lặp và chứng
minh sự tồn tại nghiệm địa phương. M.Safonov [45] chỉ ra rằng khi g = 0 sự tồn tại
nghiệm có thể chứng minh bằng định lý ánh xạ co với việc xây dựng chuẩn thích hợp,
P.Zabreiko [55] cho thấy, nó còn có thể được nghiên cứu nhờ định lý ánh xạ co trong
6không gian với chuẩn nón.
Trong trường hợp g = 0 chúng tôi xây dựng không gian (E; k:k) mà trong đó chuẩn
nón nhận giá trị, có chuẩn k:k được định nghĩa tương tự chuẩn được sử dụng bởi
Safonov và thay đổi cách định nghĩa của Zabreiko về ánh xạ Q trong điều kiện (1).
Từ đó chúng tôi cũng nhận lại được định lý Nishida theo phương pháp sử dụng không
gian với chuẩn nón. Ngoài ra, chúng tôi cũng chứng minh được tính liên tục của ánh xạ
(I T ) 1 ; trong đó T là ánh xạ tích phân tương ứng của phương trình. Trong trường
hợp ánh xạ g là compact và f thoả điều kiện ngặt hơn điều kiện Ovcjannikov và có
dạng kf (t; u) f (t; v)ks ks ku vks ; chúng tôi sử dụng định lý kiểu Krasnoselskii
cho không gian với chuẩn nón nhận giá trị trong không gian lồi địa phương để chứng
minh sự tồn tại nghiệm của bài toán Cauchy trên [0;1). Chúng tôi chưa biết kết quả
nào về tồn tại nghiệm trên [0;1) của bài toán Cauchy trên thang các không gian
Banach.
Độ đo phi compact với giá trị trong nón được định nghĩa và có các tính chất tương
tự như độ đo phi compact với giá trị trong R [6]. Độ đo này còn ít được sử dụng trong
chứng minh sự tồn tại nghiệm của các phương trình. Trong [6] đã giới thiệu một ứng
dụng của độ đo phi compact với giá trị trong nón để chứng minh sự tồn tại nghiệm
của bài toán Cauchy có chậm
x0 (t) = f [t; x (h (t))] với 0 h (t) t1=p: (4)
Trong chương 2 của luận án chúng tôi chứng minh một định lý về điều kiện để có
một ánh xạ f tác động trong không gian Banach X là cô đặc đối với độ đo phi compact
' với giá trị trong nón dương K của không gian thứ tự E. Điều kiện của chúng tôi là
'[f (Y )] A [' (Y )], Y X trong đó A : K ! K là một ánh xạ tăng. Khi đó nếu
tập Y X thoả mãn điều kiện ' [f (Y )] ' (Y ) thì ta có ' (Y ) A [' (Y )]. Như vậy
phần tử ' (Y ) 2 K là một nghiệm dưới của phương trình u = A (u) và ta có thể sử
dụng các kết quả về điểm bất động của ánh xạ tăng A để chứng minh ' (Y ) = 0. Lí
luận trên cho ta thấy lợi ích của việc sử dụng độ đo phi compact với giá trị trong nón.
7Kết quả trừu tượng trên được chúng tôi sử dụng để chứng minh sự tồn tại nghiệm cho
một mở rộng của (4) dạng
x0 (t) = f [t; x (t) ; x (h (t))] :
II. Phương trình đa trị chứa tham số trong không gian có thứ tự.
Nghiên cứu về phương trình với ánh xạ đơn trị chứa tham số dạng
x = A (; x) (5)
trong không gian có thứ tự đã thu được các kết quả sâu sắc, bắt đầu từ định lý Krein-
Rutman về giá trị riêng và vectơ riêng dương của ánh xạ tuyến tính dương mạnh, tiếp
theo là các nghiên cứu về cấu trúc toàn cục tập nghiệm của phương trình trong các
bài báo của Krasnoselskii, Dancer, Rabinowitz, Nussbaum, Amann,... [1, 12, 13, 21,
30, 31, 44].
Nghiệm của (5) thường không tồn tại đơn lẻ và ta muốn tìm hiểu xem các tập
nghiệm
S1 = fx j 9 : x = A (; x)g ;
S2 = f(; x) : x 6= ; x = A (; x)g
có dày đặc theo một nghĩa nào đó không? Krasnoselskii sử dụng bậc tôpô, kết hợp
với giả thiết về chặn dưới đơn điệu đã chứng minh rằng tập nghiệm S1 của (5) là liên
tục theo nghĩa trên biên của mọi tập mở, bị chặn chứa đều có điểm của S1. Dancer,
Rabinowitz, Nussbaum, Amann đã sử dụng bậc tôpô kết hợp với một định lý về tách
các tập compact liên thông để chứng minh sự tồn tại thành phần liên thông không bị
chặn trong tập S2.
Dạng đa trị của (5) là x 2 A (; x) và ta cũng muốn thiết lập các kết quả về cấu
trúc tập nghiệm của bao hàm thức này. Bậc tôpô cho ánh xạ đa trị dương, compact đã
được xây dựng trong các bài báo của W.Petryshyn và M.Fitzpatrick [15] và đã được
sử dụng để mở rộng sang trường hợp đa trị các định lý Krasnoselskii về điểm bất động
của ánh xạ nén-giãn nón và định lý Leggett-Williams (Xem [26, 41, 42] và các tài liệu
tham khảo trong đó). Tuy nhiên, theo hiểu biết của chúng tôi thì cho đến nay chưa có
8mở rộng của định lý Krasnoselskii về tính liên tục của tập nghiệm sang trường hợp đa
trị. Khó khăn gặp phải có lẽ liên quan đến việc chọn định nghĩa khái niệm ánh xạ đa
trị tăng thích hợp.
Trong phần đầu chương 3 của luận án chúng tôi trình bày các mở rộng sang trường
hợp đa trị cho định lý Krasnoselskii về tính liên tục của tập nghiệm và định lý Kras-
noselskii về khoảng giá trị của tham số để cho phương trình có nghiệm. Các kết quả
này được chúng tôi áp dụng để nghiên cứu bài toán biên với hàm điều khiển dạng
x00 (t) + (t) f (x (t)) = 0; x (0) = x (1) = 0;
(t) 2 F (t; x (t)) : (6)
Bài toán (6) được đưa về bài toán dạng
x 2 A (x) (7)
trong đó x 2 { [0; 1], A là toán tử tích phân đa trị. Để nghiên cứu bài toán (7) chúng
tôi xét bài toán chứa tham số x 2 A (x). Với một số giả thiết đặt lên các hàm f , F
chúng tôi chứng minh được tính liên tục của tập nghiệm của bài toán chứa tham số và
chỉ ra khoảng cụ thể các giá trị tham số để bài toán có nghiệm. Các cận của khoảng
này được tính qua dữ kiện về hàm f , F . Đặt điều kiện để khoảng này chứa 1 ta thu
được sự tồn tại nghiệm của (7), (6). Phương pháp nghiên cứu bài toán (6) của chúng
tôi khác với các nghiên cứu về các phương trình tương tự của [26, 41, 42], ở đó sử dụng
các định lý Krasnoselskii về nén-giãn nón hoặc định lý Leggett-William cho ánh xạ đa
trị.
Tiếp theo chúng tôi áp dụng định lý về tính liên tục của tập nghiệm của phương
trình có chặn dưới đơn điệu vào bài toán giá trị riêng của ánh xạ đa trị tăng, thuần
nhất dương bậc 1. Trong bài báo [35], Krein và Rutman đã chứng minh kết quả quan
trọng sau.
Định lý Krein-Rutman
Cho E là không gian Banach có thứ tự sinh bởi nón K và T : E ! E là một toán
tử tuyến tính dương và compact với bán kính phổ r (T ) > 0. Khi đó r (T ) là một giá
trị riêng của T ứng với vectơ riêng dương x0: Giả sử thêm intK 6= ? va T là dương
9mạnh, khi đó
1. x0 2 intK:
2. r(T ) là bội đơn.
3. Nếu 6= r (T ) là một giá trị riêng của T thì jj < r (T ) :
Kết quả trên đã được mở rộng cho một số lớp ánh xạ không dương mạnh như ánh
xạ u0-dương, ánh xạ không phân tích được,.... trong các công trình của Krasnoselskii
và các học trò [30, 31]. Gần đây, trong các bài báo của Nussbaum [47], K.Chang [8],
Mahadevan [37], định lý Krein đã được mở rộng một phần cho lớp ánh xạ tăng, thuần
nhất dương bậc 1 bằng cách sử dụng định lý Rabinowitz về phân nhánh toàn cục. Theo
hiểu biết của chúng tôi, các kết quả về sự tồn tại và tính chất của giá trị riêng, vectơ
riêng dương cho các ánh xạ đa trị trong không gian có thứ tự còn hạn chế, chúng tôi chỉ
tham khảo được các kết quả trong [2, 3] cho trường hợp hữu hạn chiều và trong [34, 46]
cho ánh xạ liên hợp của các quá trình lồi. Phương pháp chứng minh là sử dụng định
lý tách các tập lồi hoặc định lý về điểm cân bằng. Việc mở rộng định lý Rabinowitz
về phân nhánh toàn cục sang trường hợp đa trị rồi áp dụng vào bài toán giá trị riêng
là khó. Phương pháp của chúng tôi là sử dụng định lý về tính liên tục của tập nghiệm
của phương trình có chặn dưới đơn điệu.
Trong phần cuối của luận án chúng tôi trình bày các mở rộng các tính chất Krein-
Rutman về giá trị riêng, vectơ riêng sang trường hợp đa trị. Với việc mở rộng cho ánh
xạ đa trị các khái niệm u0-dương, u0-đơn điệu, nửa dương mạnh và một số đại lượng
thay thế cho bán kính phổ, chúng tôi đã chứng minh được một phần các tính chất
Krein-Rutman cho các ánh xạ tăng, thuần nhất dương.
Một phần kết quả của luận án đã được công bố hoặc gởi đăng trong các bài báo
[TG1-TG4] và được báo cáo tại đại hội Toán học Việt nam lần thứ 8, tháng 8/2013 tại
Nha trang và tại hội nghị khoa học khoa Toán-Tin trường Đại học Sư phạm Tp HCM.
Chương 1
PHƯƠNG TRÌNH TRONG
KHÔNG GIAN VỚI K-CHUẨN
Trong phần đầu của chương này chúng tôi trình bày các khái niệm cơ bản về không
gian với thứ tự sinh bởi nón, không gian với K-chuẩn, các tôpô được sử dụng và khái
niệm đầy đủ trên không gian này. Kết quả chính của chúng tôi trong chương này là
chứng minh các định lý về điểm bất động của tổng ánh xạ co và ánh xạ compact trên
không gian với K-chuẩn. Chúng tôi xét trong hai trường hợp: trường hợp K-chuẩn nhận
giá trị trong không gian Banach (Định lý 1.1), trường hợp K-chuẩn nhận giá trị trong
không gian lồi địa phương xác định bởi họ nửa chuẩn (Định lý 1.3) hoặc xác định bởi
cơ sở lân cận của gốc (Định lý 1.5).
Tiếp theo, chúng tôi trình bày ứng dụng kết quả trên để chứng minh sự tồn tại
nghiệm cho hai lớp bài toán Cauchy trong thang các không gian Banach: bài toán
không nhiễu (Định lý 1.6) và bài toán nhiễu (Định lý 1.7).
Kết quả ở mục 1.2 đã được công bố trong [TG1], mục 1.3 là sự mở rộng các kết
quả đã công bố trong [TG2].
10
11
1.1 Không gian với thứ tự sinh bởi nón, không gian
với K-chuẩn.
Dưới đây, chúng tôi luôn xét hình nón có các tính chất nêu trong định nghĩa sau đây.
Định nghĩa 1.1
Cho (E;
) là không gian tôpô tuyến tính thực, như vậy E là không gian tuyến tính
trên trường số thực và
là tôpô tương thích với cấu trúc đại số trên E.
Tập K E gọi là nón trên E nếu:
(i) K là tập lồi, đóng, khác rỗng
(ii) K K cho tất cả 0
(iii) K \ ( K) = fg.
Trong E với nón K ta định nghĩa quan hệ thứ tự như sau:
x y , y x 2 K:
Khi đó ta gọi bộ ba (E;K;
) là không gian có thứ tự sinh bởi nón K (gọn hơn là
không gian có thứ tự ).
Trong trường hợp (E; k:k) là không gian Banach với thứ tự sinh bởi nón K ta gọi bộ
ba (E;K; k:k) là không gian Banach thứ tự.
Định nghĩa 1.2
Cho (E;K; k:k) là không gian Banach thứ tự. Nón K được gọi là nón chuẩn nếu
như tồn tại số N > 0 sao cho
u v thì kuk N kvk : (1.1)
Các tính chất sau của thứ tự đã nêu thường xuyên được sử dụng.
Mệnh đề 1.1
Cho (E;K;
) là không gian thứ tự, khi đó:
1) Với x; y 2 E và x y thì
(i) x+ z y + z (8z 2 E);
12
(ii) x y ( 8 0) .
2) Với các lưới fxg ; fyg trong E thoả x y (8 2 ) , x
! x và y
! y
thì x y:
3) Nếu fxng E là dãy tăng và xn
! x thì xn x (8n 2 N).
Mệnh đề 1.2
Cho (E;K; k:k) là không gian Banach thứ tự và K là nón chuẩn. Khi đó:
1) Với các dãy fxng ; fyng ; fzng trong E thoả xn yn zn (8n 2 N) và limxn =
lim zn = x thì lim yn = x:
3) Nếu dãy đơn điệu fxng trong E có chứa dãy con hội tụ về x thì limxn = x:
Định nghĩa 1.3
Cho (E;K;
) là không gian thứ tự, M E: Một ánh xạ A : M ! E gọi là dương
nếu
A (x) với mọi x 2M mà x ;
được gọi là tăng nếu
x; y 2M và x y thì A (x) A (y) :
Rõ ràng rằng, nếu A : E ! E là ánh xạ tuyến tính và dương thì nó là tăng.
Với (E;K; k:k) là không gian Banach thứ tự, ký hiệu E là không gian liên hợp.
Tập hợp
K = ff 2 E : f (x) 0 cho mọi x 2 Kg
được gọi là nón liên hợp của K. Các tính chất được nhắc lại dưới đây của nón liên hợp
được sử dụng mà không chứng minh.
Mệnh đề 1.3 ([13], Proposition 19.3, p.222)
1) x 2 K , f (x) 0 8f 2 K:
2) x 2 Kn fg thì tồn tại f 2 K thoả f (x) > 0.
3) Nếu x 2int(K) và f 2 Kn f0g thì f (x) > 0:
4) Nếu x 2 @K thì tồn tại f 2 Kn f0g để cho f (x) = 0:
13
Mệnh đề sau cho phép chúng ta chọn N = 1 trong (1.1).
Mệnh đề 1.4 ([30])
Cho không gian Banach (E; k:k) với thứ tự sinh bởi nón K và k:k là phiếm hàm
Minkowskii của tập hợp