Luận văn Công thức khai triển Taylor - Gontcharov và áp dụng
Khai triển đa thức nói riêng và khai triển hàm số nói chung cùng những vấn đề liên quan đến nó là mọt phần quan trọng của đại số và giải tích toán học. Cùng với các bài toán nội suy, các bài toán về khai triển hàm số có vị trí đặc biệt trong toán học không chỉ như là những đối tượng để nghiên cứu mà còn đóng vai trò như là một trong những công cụ đắc lực của các mô hình liên tục cũng như các mô hình rời rạc của giải tích trong lý thuyết phương trình vi phân, lý thuyết xấp xỉ, lý thuyết biểu diễn. Lý thuyết khai triển hàm số cùng các bài toán nội suy liên quan ra đời rất sớm với các công trình của Taylor, Lagrange, Newton. Tuy nhiên, việc xây dựng bài toán khai triển hàm số thỏa mãn những yêu cầu khác nhau cũng như việc xây dựng lý thuyết hoàn thiện về khai triển hàm số nói chung đến nay vẫn đang được nhiều nhà toàn học tiếp tục nghiên cứu và phát triển theo nhiều hướng.