Trong những năm gần đây, khi thế giới đang đang trên con đường phát triển ở
mức toàn cầu hóa thì vấn đề ô nhiễm môi trường được đặt ra hết sức cấp thiết. Tốc
độ ô nhiễm ngày càng nhanh, mức độ ngày càng trầm trọng đã ảnh hưởng lớn đến
hệ sinh thái toàn cầu, và vấn đề ô nhiễm kim loại nặng như cadimi (Cd), chì (Pb)
trong các môi trường đất, nước, không khí đã tác động đến sức khỏe con người và
các sinh vật, gây ra sự phá vỡ nhiều quá trình chuyển hóa và cân bằng sinh thái d o
độc tính và khả năng tích luỹ của chúng. Những nguyên tố này, khác với hầu hết
các chất gây ô nhiễm khác, không phân hủy sinh học và không trải qua một ch u kỳ
sinh thái sinh học chung mà trong đó nước tự nhiên là những con đường chính [43].
Kim loại trong đất và trầm tích có thể bị hòa tan và đi vào môi trường nước
tùy thuộc vào các điều kiện hóa lý của nước như: Hàm lượng tổng các muối tan,
trạng thái oxi hóa khử, các chất hữu cơ tham gia tạo phức với kim loại. [ 31], [42],
[43], [48].
Tùy thuộc vào thành phần cấu tạo và các điều kiện địa chất, kim loại nặng có
thể được phân chia thành các dạng hóa học khác nhau có liên quan với một loạt các
pha hữu cơ và vô cơ. Nhiều công bố đã tập trung vào việc nghiên cứu hàm lượng
tổng kim loại trong đất và trầm tích [2], [27], [35], [37], [38], [46]. Tuy nhiên, nó
không thể cung cấp đủ thông tin về sự biến đổi, khả năng đáp ứng sinh học và độc
tính của kim loại. Độc tính và mức độ ảnh hưởng sinh học của chúng không chỉ phụ
thuộc vào hàm lượng tổng của chúng mà còn phụ thu ộc vào các dạng hóa học mà
chúng tồn tại, gọi là các dạng của kim loại [23], [47], [48]. Khi kim loại tồn tại ở
dạng trao đổi hoặc cacbonat thì khả năng đáp ứng sinh học tốt hơn so với kim loại
được lưu giữ trong cấu trúc tinh thể của trầm tích [23], [24], [25], [26], [28], [47],
[51].
Chính vì vậy, việc phân tích hàm lượng tổng số các kim loại nặng chưa đủ để
đánh giá mức độ gây ra ô nhiễm môi trường mà vấn đề là ở việc phân tích dạng hóa
học (trạng thái tồn tại) của các kim loại nặng để thấy các dạng đó có liên quan tới
mức độ độc như thế nào.
84 trang |
Chia sẻ: lvbuiluyen | Lượt xem: 4964 | Lượt tải: 4
Bạn đang xem trước 20 trang tài liệu Luận văn Phân tích dạng kim loại chì (pb) và cadimi (cd) trong đất và trầm tích bằng phƣơng pháp quang phổ hấp thụ nguyên tử, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
ĐẠI HỌC THÁI NGUYÊN
TRƢỜNG ĐẠI HỌC SƢ PHẠM
---------------------------------
TRẦN THỊ LỆ CHI
PHÂN TÍCH DẠNG KIM LOẠI CHÌ (Pb) VÀ
CADIMI (Cd) TRONG ĐẤT VÀ TRẦM TÍCH
BẰNG PHƢƠNG PHÁP QUANG PHỔ HẤP
THỤ NGUYÊN TỬ
LUẬN VĂN THẠC SĨ HOÁ HỌC
THÁI NGUYÊN - 2010
ĐẠI HỌC THÁI NGUYÊN
TRƢỜNG ĐẠI HỌC SƢ PHẠM
---------------------------------
TRẦN THỊ LỆ CHI
PHÂN TÍCH DẠNG KIM LOẠI CHÌ (Pb) VÀ CADIMI (Cd)
TRONG ĐẤT VÀ TRẦM TÍCH BẰNG PHƢƠNG PHÁP
QUANG PHỔ HẤP THỤ NGUYÊN TỬ
CHUYÊN NGÀNH: HOÁ PHÂN TÍCH
MÃ SỐ : 60.44.29
LUẬN VĂN THẠC SĨ HOÁ HỌC
Ngƣời hƣớng dẫn khoa học: PGS.TS LÊ LAN ANH
THÁI NGUYÊN - 2010
LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết
quả đưa ra trong luận văn này là trung thực và chưa từng được ai công bố trong
bất kỳ một công trình nào khác.
Tác giả
Trần Thị Lệ Chi
LỜI CẢM ƠN
Tôi xin chân thành bày tỏ lòng cảm ơn sâu sắc của mình tới PGS.TS Lê Lan
Anh – Cô đã tận tình hướng dẫn, động viên và giúp đỡ tôi trong suốt quá trình,
nghiên cứu và thực hiện luận văn.
Tôi xin chân thành cảm ơn TS Vũ Đức Lợi và các cô chú, anh chị phòng
Hoá phân tích - Viện Hóa học - Viện Khoa học và Công nghệ Việt Nam đã giúp đỡ
và tạo điều kiện thuận lợi để tôi thực hiện đề tài nghiên cứu này.
Tôi cũng xin chân thành cảm ơn ban chủ nhiệm khoa Hoá học cùng các thầy
cô giáo khoa Hoá học, trường Đại học Sư phạm – Đại học Thái Nguyên đã động
viên và giúp đỡ tôi trong quá trình hoàn thành luận văn này.
Thỏi Nguyên, tháng 8 năm 2010
Tác giả
TRẦN THỊ LỆ CHI
MỤC LỤC
Lời cam đoan
Mục lục
Danh mục các bảng
Danh mục các hình vẽ, đồ thị
Đặt vấn đề 1
CHƢƠNG 1: TỔNG QUAN 4
1.1 Một số quy trình phân tích và sự phân chia các dạng kim loại 4
1.1.1 Một số quy trình phân tích dạng kim loại 4
1.1.2 Sự phân chia các dạng kim loại 7
1.2 Giới thiệu chung về nguyên tố chì và cadimi 8
1.2.1 Tính chất lý - hóa học của nguyên tố chì 8
1.2.1.1 Tính chất của đơn chất 8
1.2.1.2 Hợp chất của chì 9
1.2.1.3 Một số ứng dụng và tác hại của chì 11
1.2.2 Tính chất lý - hóa học của nguyên tố cadimi 12
1.2.2.1 Tính chất của đơn chất 12
1.2.2.2 Hợp chất của cadimi 12
1.2.2.3 Một số ứng dụng và tác hại của cadimi 14
1.3 Các phương pháp định lượng chì, cadimi 15
1.3.1 Phương pháp phân tích hóa học 15
1.3.1.1 Phương pháp phân tích khối lượng 15
1.3.1.2. Phương pháp phân tích thể tích 15
1.3.2 Phương pháp phân tích công cụ 16
1.3.2.1 Phương pháp điện hoá 16
1.3.2.2 Phương pháp quang phổ 18
1.4 Giới thiệu về phương pháp phổ hấp thụ nguyên tử [12, 14] 20
1.5 Khái quát một số đặc điểm tự nhiên và kinh tế - xă hội lưu vực sông Nhuệ -
sông Đáy [4] 2 2
1.5.1 Các nguồn thải gây ô nhiễm chủ yếu môi trường nước lưu vực sông Nhuệ -
sông Đáy 23
1.5.2 Hiện trạng chức năng môi trường nước lưu vực sông 25
CHƢƠNG 2: THỰC NGHIỆM 28
2.1 Đối tượng nghiên cứu 28
2.2 Nội dung nghiên cứu 30
2.3 Lấy mẫu và xử lư mẫu 31
2.3.1 Lấy mẫu 31
2.3.2 Gia công mẫu 31
2.4 Trang thiết bị và hóa chất 31
2.4.1 Trang thiết bị 31
2.4.2 Hóa chất 32
2.4.3 Chuẩn bị hóa chất và dung dịch chuẩn 32
2.5 Xử lý thống kê kết quả thu được 33
CHƢƠNG 3: KẾT QUẢ VÀ BIỆN LUẬN 34
3.1 Khảo sát ảnh hưởng của nền đến phép đo ngọn lửa 34
3.2 Khảo sát tỉ lệ khí cháy trong phép đo ngọn lửa 41
3.2.1 Đo nguyên tố chì 41
3.2.2 Đo nguyên tố cadimi 42
3.3 Khảo sát tốc độ hút mẫu trong phép đo ngọn lửa 42
3.3.1 Đo nguyên tố chì 42
3.3.2 Đo nguyên tố cadimi 43
3.4 Khảo sát chiều cao đèn nguyên tử hóa trong phép đo ngọn lửa 43
3.4.1 Đo nguyên tố chì 43
3.4.2 Đo nguyên tố cadimi 44
3.5 Khảo sát giới hạn phát hiện (GHPH) trong phép đo ngọn lửa 44
3.5.1 Giới hạn phát hiện nguyên tố chì 44
3.5.2 Giới hạn phát hiện nguyên tố cadimi 45
3.6 Xây dựng đường chuẩn trong phép đo ngọn lửa 46
3.6.1 Xây dựng đường chuẩn định lượng nguyên tố chì 46
3.6.2 Xây dựng đường chuẩn định lượng nguyên tố cadimi 47
3.7 Xây dựng đường chuẩn trong phép đo lò Graphit 48
3.7.1 Xây dựng đường chuẩn định lượng nguyên tố chì 48
3.7.2 Xây dựng đường chuẩn định lượng nguyên tố cadimi 48
3.8 Khảo sát giới hạn phát hiện (GHPH) trong phép đo không ngọn lửa 49
3.8.1 Đo nguyên tố chì 49
3.8.2 Đo nguyên tố cadimi 50
3.9 Phân tích dạng chì và cadimi trong mẫu trầm tích và mẫu đất 51
3.9.1 Phân tích xác định dạng chì và cadimi trong mẫu trầm tích và mẫu đất 51
3.9.2 Phân tích xác định hàm lượng tổng số chì và cadimi trong trầm tích và đất
52
3.10 Đánh giá độ chính xác của phương pháp 65
KẾT LUẬN 66
Công trình đã công bố 68
Tài liệu tham khảo 69
DANH MỤC CÁC BẢNG
Bảng 1.1 Quy trình phân tích dạng kim loại của Kersten and Forstner
Bảng 1.2 Quy trình phân tích dạng kim loại của Davidson
Bảng 1.3 Quy trình phân tích dạng kim loại của Han và Banin
Bảng 1.4 Các nguồn thải gây ô nhiễm
Bảng 1.5 Tỷ lệ các nguồn thải chính gây ô nhiễm môi trường
Bảng 1.6 Lượng nước thải đổ ra lưu vực sông Nhuệ và sông Đáy
Bảng 1.7 Hiện trạng phân vựng chức năng Môi trường nước trên toàn bộ lưu
vực sông Nhuệ
Bảng 1.8 Hiện trạng phân vùng chức năng Môi trường nước trên lưu vực sông
Đáy
Bảng 2.1 Mô tả vị trí lấy mẫu đất
Bảng 2.2 Mô tả vị trí lấy mẫu trầm tích
Bảng 3.1 Các dung dịch chì trong nền CH3COONH4 1M
Bảng 3.2 Các dung dịch chì trong nền CH3COONH4 1M đã axit hóa
Bảng 3.3 Các dung dịch chì trong nền NH2OH.HCl 0,04M trong HOAc 25%
Bảng 3.4 Các dung dịch chì trong nền CH3COONH4 3,2M trong HNO3 20%
Bảng 3.5 Các dung dịch chì trong nền axit
Bảng 3.6 Các dung dịch cadimi trong nền CH3COONH4 1M
Bảng 3.7 Các dung dịch cadimi trong nền CH3COONH4 1M đã axit hóa
Bảng 3.8 Các dung dịch cadimi trong nền NH2OH.HCl 0,04M trong HOAc
25%
Bảng 3.9 Các dung dịch cadimi trong nền CH3COONH4 3,2M trong HNO3
20%
Bảng 3.10 Các dung dịch cadimi trong nền axit
Bảng 3.11 Độ hấp thụ A của chì thay đổi theo tỉ lệ khí cháy
Bảng 3.12 Độ hấp thụ A của cadimi thay đổi theo tỉ lệ khí cháy
Bảng 3.13 Độ hấp thụ A của chì thay đổi theo tốc độ hút mẫu
4
5
5
23
24
24
26
26
28
30
34
34
35
35
35
36
36
36
37
37
41
42
42
Bảng 3.14 độ hấp thụ A của cadimi thay đổi theo tốc độ hút mẫu
Bảng 3.15 Độ hấp thụ A của chì thay đổi theo chiều cao đèn
Bảng 3.16 Độ hấp thụ A của cadimi thay đổi theo chiều cao đèn
Bảng 3.17 Kết quả phân tích mẫu chì 1mg/l
Bảng 3.18 Kết quả phân tích cadimi 0,1mg/l
Bảng 3.19 Kết quả phân tích chì 5g/l
Bảng 3.20 Kết quả phân tích cadimi 0,5g/l
Bảng 3.21 Hàm lượng các dạng và tổng kim loại chì và cadimi trong trầm tích
Bảng 3.22 Hàm lượng các dạng và tổng kim loại chì và cadimi trong đất
Bảng 3.23 Giá trị pH của các mẫu đất nghiên cứu
Bảng 3.24 Kết quả phân tích nguyên tố đa lượng trong đất
Bảng 3.25 Kết quả phân tích chì và cadimi trong mẫu trầm tích chuẩn
43
44
44
45
46
49
50
52
59
63
64
65
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
Hình 1.1 Sơ đồ chiết phân tích dạng kim loại nặng trong trầm tích của Tessier và
các cộng sự 6
Hình 1.2 Sơ đồ chiết phân tích dạng kim loại nặng trong trầm tích của Tessier sau
khi đă cải tiến [51] 7
Hình 1.3 Nguyên tắc của phương pháp cực phổ (a) và Von-Ampe hòa tan (b) 17
Hình 1.4 Sơ đồ nguyên tắc cấu tạo của mỏy quang phổ hấp thụ nguyên tử 22
Hình 2.1 Bản đồ vị trí lấy mẫu đất 28
Hình 2.2 Bản đồ vị trí lấy mẫu trầm tích 30
Hình 3.1 Ảnh hưởng của các nền ở từng nồng độ 41
Hình 3.2 Đường chuẩn định lượng chì 47
Hình 3.3 Đường chuẩn định lượng cadimi 48
Hình 3.4 Đường chuẩn định lượng chì 48
Hình 3.5 Đường chuẩn định lượng cadimi 49
Hình 3.6: Sự phân bố các dạng kim loại trong trầm tích 56
Hình 3.7 Tổng hàm lượng các kim loại trong trầm tích dọc lưu vực sông Nhuệ và
Đáy 56
Hình 3.8 Sự phân bố các dạng kim loại trong đất 61
Hình 3.9 Hàm lượng tổng các kim loại trong đất 62
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 1 -
MỞ ĐẦU
Trong những năm gần đây, khi thế giới đang đang trên con đường phát triển ở
mức toàn cầu hóa thì vấn đề ô nhiễm môi trường được đặt ra hết sức cấp thiết. Tốc
độ ô nhiễm ngày càng nhanh, mức độ ngày càng trầm trọng đã ảnh hưởng lớn đến
hệ sinh thái toàn cầu, và vấn đề ô nhiễm kim loại nặng như cadimi (Cd), chì (Pb)
trong các môi trường đất, nước, không khí đã tác động đến sức khỏe con người và
các sinh vật, gây ra sự phá vỡ nhiều quá trình chuyển hóa và cân bằng sinh thái do
độc tính và khả năng tích luỹ của chúng. Những nguyên tố này, khác với hầu hết
các chất gây ô nhiễm khác, không phân hủy sinh học và không trải qua một chu kỳ
sinh thái sinh học chung mà trong đó nước tự nhiên là những con đường chính [43].
Kim loại trong đất và trầm tích có thể bị hòa tan và đi vào môi trường nước
tùy thuộc vào các điều kiện hóa lý của nước như: Hàm lượng tổng các muối tan,
trạng thái oxi hóa khử, các chất hữu cơ tham gia tạo phức với kim loại... [31], [42],
[43], [48].
Tùy thuộc vào thành phần cấu tạo và các điều kiện địa chất, kim loại nặng có
thể được phân chia thành các dạng hóa học khác nhau có liên quan với một loạt các
pha hữu cơ và vô cơ. Nhiều công bố đã tập trung vào việc nghiên cứu hàm lượng
tổng kim loại trong đất và trầm tích [2], [27], [35], [37], [38], [46]. Tuy nhiên, nó
không thể cung cấp đủ thông tin về sự biến đổi, khả năng đáp ứng sinh học và độc
tính của kim loại. Độc tính và mức độ ảnh hưởng sinh học của chúng không chỉ phụ
thuộc vào hàm lượng tổng của chúng mà còn phụ thuộc vào các dạng hóa học mà
chúng tồn tại, gọi là các dạng của kim loại [23], [47], [48]. Khi kim loại tồn tại ở
dạng trao đổi hoặc cacbonat thì khả năng đáp ứng sinh học tốt hơn so với kim loại
được lưu giữ trong cấu trúc tinh thể của trầm tích [23], [24], [25], [26], [28], [47],
[51].
Chính vì vậy, việc phân tích hàm lượng tổng số các kim loại nặng chưa đủ để
đánh giá mức độ gây ra ô nhiễm môi trường mà vấn đề là ở việc phân tích dạng hóa
học (trạng thái tồn tại) của các kim loại nặng để thấy các dạng đó có liên quan tới
mức độ độc như thế nào.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 2 -
Trong những năm qua, với việc sử dụng các kĩ thuật và công cụ phân tích hiện
đại, trên thế giới đã có nhiều công trình nghiên cứu về mức độ ô nhiễm kim loại
nặng trong đất và trầm tích [20 23], [26 28], [31], [32], [35], [38 42], [44
51].
Ở nước ta cũng đã có một số công trình bước đầu phân tích dạng tồn tại của
các kim loại nặng trong các môi trường và thu hút được sự quan tâm của nhiều nhà
phân tích [1], [9], [10], [17], [36].
Có nhiều phương pháp đã được lựa chọn nhưng xét về độ nhạy, độ chọn lọc,
khả năng phân tích một loạt mẫu ở các đối tượng khác nhau và về mặt kinh tế thì
phương pháp quang phổ hấp thụ nguyên tử được đánh giá cao hơn cả.
Do vậy đứng trước thực trạng ô nhiêm môi trường ngày càng gia tăng và sự
cần thiết của việc phân tích dạng các kim loại phục vụ việc đánh giá mức độ ô
nhiễm môi trường mà chúng tôi chọn nghiên cứu đề tài: “Phân tích dạng kim loại
chì (Pb) và cadimi (Cd) trong đất và trầm tích bằng phương pháp quang phổ hấp
thụ nguyên tử”.
Với Môc tiêu đó, chúng tôi tiến hành nghiên cứu các nội dung sau:
- Phân tích xác định hàm lượng tổng và dạng của kim loại Pb và Cd trong
đất và trầm tích.
- Đánh giá và so sánh kết quả thu được với những nghiên cứu trước đã tham
khảo trong các tài liệu.
Ý nghĩa khoa học của đề tài:
- Góp phần nghiên cứu phát triển, hoàn thiện và mở rộng phạm vi ứng dụng
của các phương pháp hóa lý hiện đại trong việc phân tích dạng tồn tại của các
nguyên tố kim loại.
- Tạo cơ sở cho việc xây dựng các tiêu chuẩn môi trường dựa trên sự tồn tại
các dạng có độc tính và mức độ đáp ứng sinh học khác nhau của các nguyên tố kim
loại trong môi trường
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 3 -
- Luận văn được thực hiện bằng phương pháp thực nghiệm. Các nội dung
của luận văn được thực hiện tại Phòng Hóa phân tích -Viện Hóa học – Viện Khoa
học và Công nghệ Việt nam.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 4 -
CHƢƠNG 1: TỔNG QUAN
1.1 Một số quy trình phân tích và sự phân chia các dạng kim loại
1.1.1 Một số quy trình phân tích dạng kim loại
Như đã nói ở trên, phân tích các dạng kim loại nặng có thể cung cấp nhiều
thông tin hữu ích liên quan đến tính chất hóa học hoặc khả năng linh động và đáp
ứng sinh học của một nguyên tố cụ thể, do đó có thể đưa ra một ước tính thực tế hơn
về tác động của kim loại đến môi trường [23], [43], [47].
- Quy trình chiết các dạng liên kết của kim loại trong trầm tích của A. Tessier
và các cộng sự [47] (hình 1.1) được coi là cơ sở của các quy trình sau này. Quy
trình này đã chia kim loại trong trầm tích thành năm dạng chính: Dạng trao đổi (F1),
dạng liên kết với cacbonat (F2), dạng liên kết trong cấu trúc oxit sắt- mangan (F3),
dạng liên kết với các hợp chất hữu cơ (F4), và dạng bền nằm trong cấu trúc tinh thể
của trầm tích (gọi là dạng cặn dư) (F5).
- Kersten và Forstner (1986) đã đưa ra quy trình sau [42]:
Bảng 1.1 Quy trình phân tích dạng kim loại của Kersten và Forstner
Dạng kim loại Hóa chất được sử dụng
Trao đổi 10 ml NH4OAc 1M pH=7, ở t
0
phòng, trong 15 phút
Cacbonat 20 ml NaOAc 1M pH =5, ở t0 phòng, trong 5 giờ
Dễ khử
20 ml NaOAc 1M /NH4OH.HCl 0.25M, pH= 5,
ở t0 phòng trong 16 giờ
Khử trung bình
20 ml NH4OH.HCl 0.25M trong HOAc 25% , pH= 2, ở 90
0
C,
trong 6 giờ
Hữu cơ \
sunphua
3 ml HNO3 0.01M, 5 ml 30% H2O2, 85
0
C, 2 giờ
Hoặc 2 ml HNO3 0.01M, 3 ml 30% H2O2, 85
0
C, 3 giờ
Hoặc 10 ml NH4OAc 1M pH =2, nhiệt độ phòng, 16 giờ
- Davidson và các cộng sự (1994) đưa ra quy trình [29], [42]:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 5 -
Bảng 1.2 Quy trình phân tích dạng kim loại của Davidson
Dạng kim loại Hóa chất được sử dụng
Trao đổi 20 ml axit HOAc 0,11M, ở t0 phòng, trong 16 giờ
Dễ khử 20 ml NH4OH.HCl 0,1M (pH= 2)
Khử trung bình (HNO3),tại t
0
phòng, trong 16 giờ
Hữucơ\
sunphua
5 ml H2O2 8,8M, 1 giờ, t
0
phòng, 1 giờ trong bình nước 850C,
20 ml NH4OAc 1M pH= 2, ở t
0
phòng, trong 16 giờ
Phương pháp chiết chọn lọc của Han và Banin (1996) chia các dạng kim loại
trong trầm tích làm 6 dạng [48] gồm: Trao đổi, liên kết với cacbonat, ôxít dễ khử,
liên kết với các chất hữu cơ, liên kết với các cặn oxit, và dạng cặn dư (bảng 1.3).
Bảng 1.3 Quy trình phân tích dạng kim loại của Han và Banin
Dạng kim loại Hóa chất được sử dụng
Trao đổi
25ml NH4NO3 1M (điều chỉnh pH = 7,0 với NH4OH), lắc 30
phút ở 250C
Cacbonat 25 ml (CH3COOH + CH3COONa) 1M ở pH =5, lắc 6 giờ
Oxit dễ khử 25 ml NH2OH.HCl 0,04M trong CH3COOH 25%, lắc, 30 phút
Liên kết với các
chất hữu cơ
3 ml HNO3 0,01M và 5ml H2O2 30%, ở 80
◦C trong 2 giờ,
thêm 2ml của H2O2, đun nóng trong 1 giờ. Thêm 15 ml HNO3
0,01M, lắc trong 30 phút
Liên kết với các
cặn oxit
25 ml NH2OH.HCl 0,04M trong CH3COOH 25%, ngâm trong
bình cách thủy ở 90◦C trong 3giờ
Dạng cặn dư
25 ml HNO3 4M, ngâm trong bình cách thủy ở 80
◦
C trong 16
giờ
Sau này, đã có nhiều công trình nghiên cứu để chiết chọn lọc các dạng liên kết
của kim loại trong trầm tích [24], [29], [34], [39], [41], [50], [51], các quy trình chủ
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 6 -
yếu dựa vào quy trình của Tessier [47], [51] và đã được cải tiến để tiết kiệm thời
gian và phù hợp với các đối tượng mẫu khác nhau (Hình 1.2)
,
Hình 1.1 Sơ đồ chiết phân tích dạng kim loại nặng trong trầm tích của Tessier
và các cộng sự
Mẫu
(chiết chọn lọc)
Mẫu (1 gam)
(chiết phân đoạn)
đoạn)
8 ml MgCl2, lắc liên tục trong
1giờ, t0 phòng
Cặn 2 Lớp dung dịch trên
Liên kết với
Cacbonat (F2)
20ml NH2OH.HCl 0,4M
trong HOAc 25% ở 960C,
4 giờ, thỉnh thoảng lắc
Đun với
HF-HCl-HNO3
Dạng hòa tan (F1)
Cặn 1 Lớp dung dịch trên
8 ml NaOAc/ HOAc (pH=5),
lắc liên tục 4 giờ, t0 phòng
Lớp dung dịch trên
Cặn 3
Liên kết với oxit của
Sắt và Mangan (F3)
Lớp dung dịch trên
Cặn 4
Lớp dung dịch trên
Cặn dư (F5)
Cặn 5
Liên kết với các chất
hữu cơ (F4)
8ml H2O2 30% (pH=2)
+ 3ml HNO3 0,02M
85
0C, thỉnh thoảng lắc
10ml NaOAc 1M,
1,5ml HOAc 5M,
lắc liên tục 6 giờ
12,5ml dung dịch (20g
ascorbic, 50g NaCtr,
50g NaHCO3 trong 1
lít), lắc liên tục 24 giờ
11ml H2O2 30%
(pH=5), 85
0C thỉnh
thoảng lắc, 5 giờ,
thêm 5 ml NH4OAc,
lắc liên tục 1giờ
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 7 -
Hình 1.2 Sơ đồ chiết phân tích dạng kim loại nặng trong trầm tích của Tessier
sau khi đã cải tiến [51]
1.1.2 Sự phân chia các dạng kim loại
Kim loại trong đất và trầm tích được chia thành 5 dạng chính: Dạng trao đổi,
dạng liên kết với cacbonat, dạng hấp phụ trên bề mặt ôxit sắt - mangan, dạng liên
Mẫu trầm tích
(1g)
10ml CH3COONH4 1M, lắc
1h, Để ở nhiệt độ phòng
Khuấy liên tục
20ml CH3COONH4 1M axit
hóa pH=5 với HOAc, lắc 5h
Để ở nhiệt độ phòng
20 ml NH2OH.HCl 0,04M
trong (v/v) HOAc 25 % ở
95
0
C trong 5h
10 ml CH3COONH4 3,2M
trong HNO3 20%,
lắc 0,5h ở nhiệt độ phòng
20 ml hỗn hợp 3:1
HCl-HNO3
Dạng trao đổi (F1)
Dạng liên kết với cacbonat
(F2)
Dạng liên kết với sắt -
mangan oxit (F3)
Dạng liên kết với
hữu cơ (F4) Dạng cặn dư nằm
trong cấu trúc của trầm
tích (F5)
(F5)
Dịch chiết
Dịch chiết
Dịch chiết
Phần cặn 1
Phần cặn 3
Phần cặn 4
Phần cặn 2 Dịch chiết
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 8 -
kết với các hợp chất hữu cơ và dạng bền nằm trong cấu trúc của trầm tích [25], [28],
[44], [45], [51].
- Dạng trao đổi: Kim loại trong dạng này liên kết với trầm tích bằng lực hấp
phụ yếu trên các hạt. Sự thay đổi lực ion của nước sẽ ảnh hưởng đến khả năng hấp
phụ hoặc giải hấp các kim loại này dẫn đến sự giải phóng hoặc tích lũy kim loại tại
bề mặt tiếp xúc của nước và trầm tích (hoặc đất).
- Dạng liên kết với cacbonat: các kim loại liên kết với carbonat rất nhạy
cảm với sự thay đổi của pH, khi pH giảm thì kim loại tồn tại ở dạng này sẽ được
giải phóng.
- Dạng liên kết với Fe-Mn oxit: Ở dạng liên kết này kim loại được hấp phụ
trên bề mặt của Fe-Mn oxi hydroxit và không bền trong điều kiện khử, bởi vì trong
điều kiện khử trạng thái oxi hóa khử của sắt và mangan sẽ bị thay đổi, dẫn đến các
kim loại trong trầm tích (hoặc đất) sẽ được giải phóng vào pha nước.
- Dạng liên kết với hữu cơ: Các kim loại ở dạng liên kết với hữu cơ sẽ
không bền trong điều kiện oxi hóa, khi bị oxi hóa các chất hữu cơ sẽ phân hủy và
các kim loại sẽ được giải phóng vào pha nước.
- Dạng cặn dƣ: Phần này chứa các muối khoáng tồn tại trong tự nhiên có thể
giữ các vết kim loại trong nền cấu trúc của chúng, do vậy khi kim loại tồn tại trong
phân đoạn này sẽ không thể hòa tan vào nước trong các điều kiện như trên.
Trong năm dạng trên, mức độ dễ hòa tan vào cột nước xếp theo thứ tự các
dạng sau: Trao đổi Liên kết với carbonat Liên kết với Fe - Mn oxit Liên
kết với hữu cơ Cặn dư.
1.2 Giới thiệu chung về nguyên tố chì và cadimi [8], [13], [22]
1.2.1 Tính chất lý - hóa học của nguyên tố chì
1.2.1.1 Tính chất của đơn chất
Chì (Pb) thuộc nhóm IVA trong hệ thống tuần hoàn các nguyên tố hóa học.
Chì có hai trạng thái oxy hóa bền chính là Pb(II) và Pb(IV) và có bốn đồng vị là
204
Pb,
206
Pb,
207
Pb và
208Pb. Trong môi trường axit nó tồn tại dưới dạng ion Pb2+
trong các hợp chất vô cơ và hữu cơ.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
- 9 -
Chì có trong tự nhiên dưới dạng khoáng Sunfua Galen, khoáng Cacbonate-
Cerussite và Sunfat Anglessite. Trong đất có một lượng nhỏ chì, sự hoà tan của chì
trong đất tăng lên do quá trình axit hoá trong (đất chua). Chì có khả năng được tích
tụ trong cây trồng trong quá trình sinh trưởng và do đó đối với cây lương thực bị
nhiễm chì có thể dẫn