Vai trò quan trọng của các hợp chất thiên nhiên có hoạt tính
sinh học đã được khẳng định từ các nền y học cổ truyền cho đến y
học hiện đại. Giá trị của chúng không chỉ có công dụng trực tiếp làm
thuốc chữa bệnh mà vì còn có thể dùng làm nguyên mẫu hoặc cấu
trúc dẫn đường cho sự phát hiện và phát triển nhiều dược phẩm mới.
Việt Nam được đánh giá là nước có nguồn tài nguyên dược liệu
phong phú và có nhiều kinh nghiệm sử dụng nguồn dược liệu này
nhờ vào nền y học cổ truyền lâu đời. Theo thống kê ở Việt Nam hiện
có hơn 13000 loài thực vật trong đó hơn 5000 loài được sử dụng làm
thuốc. Đây là một lợi thế để chúng ta khai thác nguồn dược liệu này
phục vụ cho cuộc sống. Trên cơ sở kết quả sàng lọc các dịch chiết
thô của một số dược liệu Việt Nam về các hoạt tính gây độc tế bào
ung thư và kháng viêm, rễ củ cây Mạch môn được lựa chọn làm đối
tượng nghiên cứu của luận án.
Mạch môn có tên khoa học là Ophiopogon japonicus (L.f.)
Ker-Gawl. được trồng nhiều nơi trong nước ta làm cảnh và làm
thuốc. Rễ củ của cây này là một dược liệu quý có mặt trong rất nhiều
bài thuốc y học cổ truyền với mục đích chữa ho long đờm, thương
tổn, ho lao, sốt, bệnh lý tiểu đường, táo bón, thổ huyết, chảy máu
cam. Các nghiên cứu trước đây về thành phần hoá học đã chỉ ra rằng
cây này có chứa các hợp chất homoisoflavonoid, steroid saponin và
polysaccharide. Đây là những thành phần có nhiều hoạt tính sinh học
đáng chú ý như kháng viêm, chống oxi hóa, gây độc tế bào, phòng và
ngăn ngừa bệnh tiểu đường Vì vậy đề tài “Nghiên cứu thành
phần hoá học và hoạt tính sinh học của rễ củ cây Mạch môn
(Ophiopogon japonicus (L.f.) Ker-Gawl.)” được thực hiện nhằm2
mục tiêu phát hiện được các hoạt chất có tiềm năng từ cây Mạch môn
góp phần làm rõ hơn những công dụng chữa bệnh trong y học cổ
truyền đồng thời làm tăng giá trị khoa học của cây này ở Việt Nam
27 trang |
Chia sẻ: thientruc20 | Lượt xem: 458 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Nghiên cứu thành phần hoá học và hoạt tính sinh học của rễ củ cây mạch môn (ophiopogon japonicus (l.f.) ker - Gawl.), để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC
VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ
------------------------
Nguyễn Đình Chung
NGHIÊN CỨU THÀNH PHẦN HOÁ HỌC VÀ HOẠT
TÍNH SINH HỌC CỦA RỄ CỦ CÂY MẠCH MÔN
(OPHIOPOGON JAPONICUS (L.f.) KER-GAWL.)
Chuyên ngành: Hóa Hữu cơ
Mã số: 62.44.01.14
TÓM TẮT LUẬN ÁN TIẾN SĨ HÓA HỌC
Hà Nội – 2018
2
Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ -
Viện Hàn lâm Khoa học và Công nghệ Việt Nam
Người hướng dẫn khoa học 1: PGS. TS. Nguyễn Tiến Đạt
Người hướng dẫn khoa học 2: TS. Nguyễn Văn Thanh
Phản biện 1:
Phản biện 2:
Phản biện 3:
Luận án sẽ được bảo vệ tại hội đồng chấm luận án Tiến sĩ cấp Học
viện họp tại Viện Hàn lâm Khoa học và Công nghệ Việt Nam
Vào hồi: giờ ngày tháng năm 2018
Có thể tìm hiểu luận án tại:
- Thư viện Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa
học và Công nghệ Việt Nam
- Thư viện Quốc gia
1
GIỚI THIỆU LUẬN ÁN
1. Tính cấp thiết của luận án
Vai trò quan trọng của các hợp chất thiên nhiên có hoạt tính
sinh học đã được khẳng định từ các nền y học cổ truyền cho đến y
học hiện đại. Giá trị của chúng không chỉ có công dụng trực tiếp làm
thuốc chữa bệnh mà vì còn có thể dùng làm nguyên mẫu hoặc cấu
trúc dẫn đường cho sự phát hiện và phát triển nhiều dược phẩm mới.
Việt Nam được đánh giá là nước có nguồn tài nguyên dược liệu
phong phú và có nhiều kinh nghiệm sử dụng nguồn dược liệu này
nhờ vào nền y học cổ truyền lâu đời. Theo thống kê ở Việt Nam hiện
có hơn 13000 loài thực vật trong đó hơn 5000 loài được sử dụng làm
thuốc. Đây là một lợi thế để chúng ta khai thác nguồn dược liệu này
phục vụ cho cuộc sống. Trên cơ sở kết quả sàng lọc các dịch chiết
thô của một số dược liệu Việt Nam về các hoạt tính gây độc tế bào
ung thư và kháng viêm, rễ củ cây Mạch môn được lựa chọn làm đối
tượng nghiên cứu của luận án.
Mạch môn có tên khoa học là Ophiopogon japonicus (L.f.)
Ker-Gawl. được trồng nhiều nơi trong nước ta làm cảnh và làm
thuốc. Rễ củ của cây này là một dược liệu quý có mặt trong rất nhiều
bài thuốc y học cổ truyền với mục đích chữa ho long đờm, thương
tổn, ho lao, sốt, bệnh lý tiểu đường, táo bón, thổ huyết, chảy máu
cam. Các nghiên cứu trước đây về thành phần hoá học đã chỉ ra rằng
cây này có chứa các hợp chất homoisoflavonoid, steroid saponin và
polysaccharide. Đây là những thành phần có nhiều hoạt tính sinh học
đáng chú ý như kháng viêm, chống oxi hóa, gây độc tế bào, phòng và
ngăn ngừa bệnh tiểu đường Vì vậy đề tài “Nghiên cứu thành
phần hoá học và hoạt tính sinh học của rễ củ cây Mạch môn
(Ophiopogon japonicus (L.f.) Ker-Gawl.)” được thực hiện nhằm
2
mục tiêu phát hiện được các hoạt chất có tiềm năng từ cây Mạch môn
góp phần làm rõ hơn những công dụng chữa bệnh trong y học cổ
truyền đồng thời làm tăng giá trị khoa học của cây này ở Việt Nam.
2. Mục tiêu nghiên cứu của luận án
Phân lập và xác định cấu trúc các hợp chất sạch từ rễ củ cây
Mạch môn;
Đánh giá tác dụng gây độc tế bào và hoạt tính kháng viêm dựa
trên ảnh hưởng ức chế sự sản sinh NO của các hợp chất phân
lập được.
3. Các nội dung nghiên cứu chính của luận án
Phân lập các hợp chất từ rễ củ cây Mạch môn bằng các
phương pháp sắc ký kết hợp. Xác định cấu trúc hóa học của
các hợp chất phân lập được bằng các phương pháp vật lý, hóa
học;
Đánh giá hoạt tính gây độc tế bào và hoạt tính kháng viêm của
các hợp chất phân lập được;
Chƣơng 1. TỔNG QUAN
Những nghiên cứu trên thế giới và trong nước về hóa học và
hoạt tính sinh học của cây Mạch môn (O. japonicus).
Chƣơng 2. ĐỐI TƢỢNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU
2.1. Mẫu thực vật
Mẫu thực vật được PGS.TS. Trần Huy Thái (Viện Sinh thái
và Tài nguyên Sinh vật - Viện Hàn lâm Khoa học và Công nghệ Việt
Nam) xác định tên khoa học, tiêu bản lưu tại Viện Sinh thái và Tài
nguyên Sinh vật và Viện Hóa sinh biển.
3
2.2. Phƣơng pháp nghiên cứu
2.2.1. Phương pháp phân lập và tinh chế các hợp chất
Việc phân lập, tinh chế các phần dịch chiết của cây được
thực hiện bằng các phương pháp: sắc ký lớp mỏng (TLC), sắc ký lớp
mỏng điều chế (PTLC), sắc ký cột thường (CC) silica gel với các cỡ
hạt khác nhau, sắc ký cột pha đảo YMC RP-C18 và ray phân tử
Sephadex LH-20.
2.2.2. Phương pháp xác định cấu trúc hóa học
Cấu trúc của hợp chất được xác định bằng sự kết hợp giữa
các thông số vật lý với các phương pháp phổ hiện đại: điểm nóng
chảy (Mp), độ quay cực ([α]D), phổ hồng ngoại (FT IR), phổ lưỡng
sắc tròn (CD), phổ khối phun mù điện tử (ESI-MS), phổ khối phân
giải cao (HR ESI MS), phổ cộng hưởng từ hạt nhân: phổ một chiều
(
1
H NMR,
13
C NMR và DEPT) và phổ 2 chiều (COSY, HSQC,
HMBC và NOESY/ROESY).
2.2.3. Phương pháp thử hoạt tính sinh học
Hoạt tính gây độc trên 4 dòng tế bào ung thư người: tế bào ung
thư phổi kháng thuốc (A549), ung thư phổi người (LU-1), ung
thư biểu mô người (KB) và ung thư da người (SK-Mel-2).
Hoạt tính tính ức chế sản sinh NO trên tế bào đại thực bào
RAW264.7 kích thích bởi LPS.
4
2.3. Phân lập các hợp chất từ rễ củ cây Mạch môn Ophiopogon
japonicus
Bột khô rễ củ mạch môn
O. japonicus (2.4kg)
Ngâm với MeOH (5L×3 lần)
Cất loại dung môi
Cặn MeOH tổng
(360 g)
Chiết với CHCl3 (3L×3 lần)
OJC1.2
Cặn CHCl3 (8,6g)
OJW
Dịch nước
Diaion HP-20 CC,
Nước/Methanol (100:0-0:100)
OJW 1.3 OJW 1.5 OJW 1.4
100:0 75:25 0:100
Hình 3. Sơ đồ chiết phân đoạn rễ củ Mạch môn
OJC21.7
(264,9 mg)
YMC RP-18 CC,
Acetone:nước (1.5:1)
Cặn CHCl3
OJC1.2 (8,6 g)
Silica gel CC,
n-Hexane:EtOAc (100:0-0:100)
OJC17.1
(2,46 g)
OJC17.3
(986 mg)
OJC17.4 OJC17.5 OJC17.9
Silica gel CC,
n-Hexane:EtOAc (20:1)
Hợp chất OJ-5
(69,5 mg)
OJC21.1 OJC21.4
(116,4 mg)
OJC21.9
(50,5 mg)
YMC RP-18 CC,
Acetone:nước (2:1)
Hợp chất OJ-4
(18,2 mg)
Silica gel CC,
n-Hexane:acetone (8:1)
Hợp chất OJ-2
(20,8 mg)
c
Hình 4. Sơ đồ phân lập các hợp chất OJ-2, OJ-4 và OJ-5 từ cặn chloroform
5
YMC RP-18 CC,
Acetone:Nước (1.5:1)
OJC 17.3
(986 mg)
Silica gel CC,
n-Hexane:EtOAc (9:1)
OJC19.1
(351,9 mg)
OJC19.2
(60 mg)
OJC19.3
(197 mg)
OJC19.4
YMC RP-18 CC,
Acetone:Nước (1:1)
Hợp chất OJ-7
(125.7 mg)
OJC20.1
(70,9 mg)
OJC20.2
(162,3 mg)
YMC RP-18 CC,
Acetone:Nước (2:1)
Hợp chất OJ-9
(46.3 mg)
YMC RP-18 CC,
Acetone:Nước (1:1)
Silica gel CC,
n-Hexane:acetone (7:1)
Hợp chất OJ-6
(40.4 mg)
Hợp chất OJ-8
(31.5 mg)
Kết tinh, Rửa tủa bằng n-
Hexane:CH2Cl2 (3:1)
Hình 5. Sơ đồ phân lập từ hợp chất OJ-6 đến OJ-9 từ phân đoạn OJC17.3
OJW1.5
(11,8 g)
Silica gel CC,
CHCl3:MeOH (100:0-0:100)
OJW2.1
(200 mg)
OJW2.4
(455 mg)
OJW2.5
(585 mg)
OJW2.6
(3,6 g)
OJW2.9
c
1. Silica gel CC, n-Hexane:EtOAc (12:1)
2. Silica gel CC,
n-Hexane:CH2Cl2:Acetone (15:1:0.1)
Hợp chất OJ-1
(30,1 mg)
Silica gel CC,
CH2Cl2:MeOH(10:1
)
OJW9.1 OJW9.2
(1,39 g)
OJW9.3
(868 mg)
1. Sephadex LH-20 CC, Methanol:Nước (1:1)
2. YMC RP-18 CC, Methanol:Nước (1:2)
Hợp chất OJ-12
(45,7 mg)
Sephadex LH-20 CC,
Methanol:Nước (1:1)
Hợp chất OJ-15
(365,7 mg)
Hình 6. Sơ đồ phân lập hợp chất OJ-1, OJ-12 và OJ-15 từ phân đoạn OJW1.5
6
OJW2.4
(455 mg)
YMC RP-18 CC,
MeOH:Nước (1:1)
OJW 4.1 OJW4.2
(49,3 mg)
OJW 4.3 OJW 4.4
(152,5 mg)
Silica gel CC,
CH2Cl2:Acetone (10:1 và 6:1)
Hợp chất OJ-3
(20 mg)
Sephadex LH-20 CC,
Methanol:Nước (1:1)
Hợp chất OJ-11
(15,5 mg)
Hợp chất OJ-10
(35,5 mg)
Hình 7. Sơ đồ phân lập các hợp chất OJ-3, OJ-10 và OJ-11 từ phân đoạn
OJW2.4
OJW2.5
(585 mg)
YMC RP-18 CC,
Methanol : Nước (1:1)
OJW12.1 OJW12.4
(40 mg)
OJW12.5
OJW12.6
(26,6 mg)
Sephadex LH-20 CC,
Methanol:Nước (1.5:1)
Hợp chất OJ-13
(13,9 mg)
Silica gel CC,
CH2Cl2:Methanol (20:1)
Hợp chất OJ-14
(10,1 mg)
Hình 8. Sơ đồ phân lập các hợp chất OJ-13 và OJ-14 từ phân đoạn OJW2.5
7
2.4. Thông số vật lý và dữ kiện phổ của các hợp chất
Phần này trình bày thông số vật lý và các dữ kiện phổ của các
hợp chất phân lập từ O. japonicus.
2.5. Kết quả thử hoạt tính của các hợp chất phân lập đƣợc
2.5.1. Kết quả thử hoạt tính gây độc tế bào ung thư của các hợp
chất
Bảng 14. Kết quả thử hoạt tính gây độc tế bào in vitro của các hợp
chất trên các dòng tế bào ung thư người (IC50, μM)
Hợp chất LU-1 KB SK-Mel-2 A549
OJ-1 10,90 8,86 14,01 -
OJ-2 >30 >30 >30 -
OJ-3 >30 >30 29,00 -
OJ-4 >30 >30 >30 -
OJ-5 >30 >30 >30 -
OJ-6 0,66 0,51 0,66 6,26
OJ-7 17,14 >30 28,29 -
OJ-8 27,66 >30 >30 -
OJ-9 >30 >30 >30 -
OJ-10 >30 >30 20,38 -
OJ-11 >30 >30 >30 -
OJ-12 >30 >30 >30 -
OJ-13 >30 >30 >30 -
OJ-14 >30 >30 >30 -
OJ-15 >30 28,84 24,29 -
Ellipticine 0,43 0,51 0,27 -
Camptothecin - - - 12,4
Ellipticine và camptothecin: các đối chứng dương sử dụng trong thực nghiệm.
2.5.2. Tác dụng tính ức chế sản sinh NO
Bảng 15. Tác dụng tính ức chế sản sinh NO (IC50, μM)
Hợp
chất OJ-1 OJ-2 OJ-3 OJ-4 OJ-5 OJ-6 OJ-7 OJ-8
IC50
(μM)
11,4 29,1 >30 >30 >30 22,5 19,3 >30
Hợp
chất OJ-9 OJ-10 OJ-11 OJ-12 OJ-13 OJ-14 OJ-15
Card.*
IC50
(μM)
>30 >30 >30 >30 >30 >30 >30 2,80
* Cardamonin: đối chứng dương
8
Chƣơng 3. THỰC NGHIỆM VÀ KẾT QUẢ
3.1. Các hợp chất phân lập đƣợc từ rễ củ Mạch môn
Hình 9. Cấu trúc hóa học các hợp chất phân lập từ rễ củ Mạch môn
9
3.1.1. Hợp chất OJ-1:(2R)-(4-methoxybenzyl)-5,7-dimethyl-6-hydro
xyl-2,3-dihydrobenzofuran (Hợp chất mới)
Hình 10. Cấu trúc của hợp chất OJ-1 và các tương tác HMBC chính
Hình 12. Phổ 1H NMR của hợp chất OJ-1
Hợp chất OJ-1 thu được dưới dạng bột màu vàng. Công thức
phân tử của nó được xác định là C18H20O3 trên cơ sở sự xuất hiện pic
ion phân tử tại m/z 283,1365 [M – H]‒ (tính toán lý thuyết cho công
thức C18H19O3, 283,1334) trên phổ khối lượng phân giải cao HR-
ESI-MS .Trên phổ 1H NMR của hợp chất OJ-1 xuất hiện tín hiệu đặc
trưng của vòng thơm dạng A2B2 [δH 7,19 (2H, d, J = 8,5 Hz, H-2' và
6') và 6,86 (2H, d, J = 8,5 Hz, H-3' và 5')], một tín hiệu singlet của
proton thơm [δH 6,67 (1H, s, H-4)], một proton của nhóm methin liên
kết với oxy [δH 4,86 (1H, m, H-2)], một nhóm methoxy [δH 4,86 (1H,
m, H-2)], hai nhóm methylen [δH 3,07 (1H, dd, J = 8,5, 15,0 Hz, H-
10
3a), 2,82 (1H, dd, J = 7,5, 15,0 Hz, H-3b), 3,02 (1H, dd, J = 7,0, 14,0
Hz, H-7'a), 2,84 (1H, dd, J = 6,5, 14,0 Hz, H-7'b)] và hai nhóm
methyl thế trên vòng thơm [δH 2,12 (3H, s, CH3-5) và 2,05 (3H, s,
CH3-7)].
Hình 13. Phổ 13C NMR của hợp chất OJ-1
Phân tích dữ liệu phổ 13C NMR kết hợp với phổ DEPT nhận
thấy có sự xuất hiện của 18 tín hiệu cacbon, bao gồm 2 methyl
cacbon [δC 9,15 (C-5) và 16,4 (C-7)], 2 methylen [δC 35,5 (C-3) và
42,0 (C-7')], một methoxy [δC 55,6 (4'-OCH3)], một methin gắn oxy
[δC 85,1 (C-2)], 5 methin của vòng thơm [δC 123,9 (C-4), 131,4 (C-2'
và 6'), và 114,7 (C-3' và 5')], 3 cacbon của vòng thơm liên kết với
oxy [δC 153,8 (C-6), 158,0 (C-7a) và 159,7 (C-4')] và 4 cacbon
không liên kết với hydro [δC 118,0 (C-3a), 117,3 (C-5), 108,1 (C-7)
và 131,2 (C-1')]. Những dữ liệu phổ ở trên gợi ý cấu trúc của hợp
chất OJ-1 là một hợp chất mới có khung 2-benzyl-2,3-
dihydrobenzofuran [1,2].
11
Bảng 3. Số liệu phổ 1H và 13C NMR (CD3OD, δ ppm) của OJ-1
Vị trí TLTK [2] δC
a
δH
b
, dạng pic (J = Hz)
2 85,3 85,1 4,86, m
3 34,4 35,8 3,07, dd (8,5, 15,0);
2,82, dd (7,5, 15,0)
3a 118,4 118,0 -
4 121,3 123,9 6,67, s
5 118,4 117,3 -
6 152,2 153,8 -
7 104,4 108,1 -
7a 158,4 158,0 -
1' 130,4 131,2 -
2' 129,3 131,4 7,19, d (8,5)
3' 113,9 114,7 6,86, d (8,5)
4' 158,4 159,7 -
5' 113,9 114,7 6,86, d (8,5)
6' 129,3 131,4 7,19, d (8,5)
7' 40,9 42,0 3,02, dd (7,0, 14,0);
2,84, dd (6,5, 14,0)
5-Me - 16,4 2,12, s
6-Me 56,4 (OMe) -
7-Me 60,5 (OMe) 9,15 2,05, s
4'-OMe 55,1 55,6 3,78, s
a
125 MHz,
b
500 MHz. Tham khảo hợp chất 6,7-dimethoxy-2-(4-methoxylbenzyl)-2,3-
dihydrobenzofuran theo tài liệu [2].
Cấu trúc của hợp chất OJ-1 đã được xác nhận dựa trên phân
tích dữ liệu phổ hai chiều. Trên phổ tương tác xa HMBC nhận thấy
có sự tương tác của proton thơm H-4 với cacbon C-3, C-3a, C-5, C-
6, và C-7a; từ proton của nhóm methyl CH3-5 với cacbon C-4, C-5,
và C-6; và từ proton của nhóm methyl CH3-7 với cacbon C-6, C-7 và
C-7a. Những tương tác này đã khẳng định cho sự có mặt của khung
dihydrobenzofuran với nhóm thế hydroxyl tại vị trí C-6 và hai nhóm
methyl tại vị trí C-5 và C-7. Vị trí của nhóm methoxy đã được xác
định tại vị trí C-4' trên cơ sở tương tác HMBC giữa proton của nhóm
12
methoxy và cacbon C-4'. Bằng cách phân tích chi tiết các tương tác
nhận được trên phổ HMBC cho phép khâu nối các mảnh cấu trúc lại
với nhau và xác định được toàn bộ cấu trúc phẳng của hợp chất OJ-1
như đã được mô tả trong hình.
Tính toán 2R
Thực nghiệm
Hình 17. Phổ ECD của hợp chất OJ-1
Cấu hình tuyệt đối tại vị trí C-2 của OJ-1 được xác định dựa
vào phương pháp tính toán lượng tử hóa học điện tử lưỡng sắc tròn
(ECD - Electronic Circular Dichroism) dựa trên sự phụ thuộc giữa
thời gian và mật độ lý thuyết [3]. Trên phổ ECD của hợp chất OJ-1
xuất hiện hiệu ứng cotton dương tại 224 nm cho cấu hình 2R ở vị trí
C-2, phù hợp với mô hình tính toán. Trên cơ sở phân tích dữ liệu
phổ, hợp chất mới OJ-1 được xác định là (2R)-(4-methoxybenzyl)-
5,7-dimethyl-6-hydroxyl-2,3-dihydrobenzofuran.
3.1.2. Hợp chất OJ-7: Homoisopogon B
Hình 55. Cấu trúc của hợp chất OJ-7 và các tương tác HMBC chính
13
Hình 57. Phổ 1H NMR của hợp chất OJ-7
Hợp chất OJ-7 đã được phân lập dưới dạng bột màu vàng.
Công thức phân tử được xác định là C19H22O4 trên cở sở dữ liệu phổ
khối phân giải cao HR-ESI-MS (m/z 315,1602 [M + H]+, tính toán lý
thuyết cho công thức C19H23O4, 315,1596). Phổ cộng hưởng từ hạt
nhân
1
H NMR thể hiện những đặc trưng hấp thụ tại δH 4,06 (1H, dd,
J = 2,0, 11,0 Hz) và 3,83 (1H, dd, J = 6,0, 11,0 Hz) gắn cho proton
H-2, δH 2,25 (1H, m) của proton H-3; δH 2,80 (1H, dd, J = 5,5, 16,0
Hz) và 2,44 (1H, dd, J = 6,5, 16,0 Hz) của proton H-4; δH 2,64 (1H,
dd, J = 9,0, 14,0 Hz) và 2,52 (1H, dd, J = 6,5, 14,0 Hz) được gắn cho
proton H-9. Thêm vào đó, trên phổ 1H NMR cũng xuất hiện những
tín hiệu tại δH 6,38 (1H, d, J = 2,5 Hz, H-3'), 6,40 (1H, d, J = 2,5, 8,0
Hz, H-5'), và 6,98 (1H, d, J = 8,0 Hz, H-6') gợi ý cho sự có mặt của
nhóm thế 1,2,4 trên vòng thơm B. Hai tín hiệu singlet của proton
thơm tại δH 6,76 (1H, s, H-5) và 6,34 (1H, s, H-8) đã được phát hiện,
gợi ý cho sự có mặt của 4 nhóm thế trên vòng A.
Từ phổ 13C NMR và DEPT, mười chín tín hiệu cacbon đã
được ghi nhận bao gồm: một nhóm methyl [δC 15,3 (6-CH3)], 2
nhóm methoxy [δC 55,2 (7-OCH3) và 55,3 (4'-OCH3)], 3 nhóm
14
methylen [δC 69,2 (C-2), 30,2 (C-4) và 31,0 (C-9)], một nhóm methin
δC 33,2 (C-3), 5 methin của vòng thơm [δC 131,4 (C-5), 98,9 (C-8),
102,0 (C-3'), 106,1 (C-5'), và 131,5 (C-6')] và 7 cacbon thơm không
liên kết với hydro [δC 112,4 (C-4a), 119,1 (C-6), 156,7 (C-7), 152,7
(C-8a), 118,0 (C-1'), 155,0 (C-2') và 159,3 (C-4')]. Những dữ liệu
trên đã gợi ý rằng hợp chất OJ-7 là một homoisoflavane [5].
Hình 58. Phổ 13C NMR của hợp chất OJ-7
Trên phổ hai chiều tương tác xa HMBC đã thu được tín hiệu
tương tác giữa proton của nhóm methyl tại δH 2,10 (3H, s) với C-5
(δC 131,4), C-6 (δC 119,1) và C-7 (δC 156,7), và tín hiệu từ proton
của nhóm methoxy tại δH 3,74 đến C-7 và từ δH 3,73 tới C-4' (δC
159,3). Các kết quả này đã xác định vị trí của nhóm methyl và
methoxy trên khung homoisoflavane tại C-6, C-7 và C-4', tương ứng.
Cấu hình tuyệt đối tại C-3 cũng được xác định là R trên cơ sở hiệu
ứng cotton âm tại bước sóng 230 nm và hiệu ứng cotton dương tại
bước sóng 285 nm trên phân tích phổ CD và so sánh với tài liệu tham
khảo trước đó công bố cấu hình tuyệt đối cho hợp chất (3R)-6,4'-
dihydroxy-8-methoxyhomoisoflavan ([θ]282 +1080 và [θ]217 -2072)
15
[5]. Theo đó, cấu trúc hợp chất mới OJ-7 đã được xác định là (3R)-
4',7-dimethoxy-2'-hydroxy-6-methylhomoisoflavane và là một hợp
chất mới được gọi tên homoisopogon B.
Bảng 9. Số liệu phổ 1H và 13C NMR (CDCl3, δ ppm) của OJ-7
Vị trí TLTK [4] δC
a
δH
b dạng pic (J = Hz)
2 69,9 69,2 4,06, dd (2,0, 11,0)
3,83, dd (6,0, 11,0)
3 34,1 33,2 2,25, m
4 30,3 30,2 2,80, dd (5,5, 16,0)
2,44, dd (6,5, 16,0)
4a 113,8 112,4 -
5 130,5 131,4 6,76, s
6 107,8 119,1 -
7 155,3 156,7 -
8 103,0 98,9 6,34, s
8a 154,7 152,7 -
9 37,3 31,0 2,64, dd (9,0, 14,0)
2,52, dd (6,5, 14,0)
1' 132,6 118,0 -
2' 115,1 155,0 -
3' 145,0 102,0 6,38, d (2,5)
4' 145,5 159,3 -
5' 116,6 106,1 6,40, dd (2,5, 8,0)
6' 120,4 131,5 6,98, d (8,0)
6-CH3 - 15,3 2,10, s
7-OCH3 55,2 3,74, s
4'-OCH3 56,0 55,3 3,73, s
a125 MHz, b500 MHz. Tham khảo hợp chất 7-hydroxy-3-(3-hydroxy-4-
methoxybenzyl)chroman theo tài liệu [4].
16
3.2. Đánh giá hoạt tính sinh học của các hợp chất phân lập đƣợc
3.2.1 Hoạt tính gây độc tế bào trên các dòng tế bào ung thư
Kết quả theo bảng cho thấy đối với dòng tế bào LU-1 có 4
hợp chất thử nghiệm mang hoạt tính tốt là OJ-1, OJ-6, OJ-7 và OJ-
8, trong đó OJ-6 thể hiện hoạt tính mạnh nhất với giá trị IC50 = 0,66
µM. Trong khi đó ở dòng tế bào ung thư biểu mô KB có 3 chất thể
hiện hoạt tính tốt là OJ-1, OJ-6 và OJ-15, trong đó OJ-1 có hoạt
tính mạnh nhất với giá trị IC50 = 0,51 µM. 6 hợp chất gồm OJ-1, OJ-
3, OJ-6, OJ-7, OJ-10 và OJ-15 lại có tác dụng gây độc tế bào ung
thư da (SK-Mel-2).
Điều đáng chú ý là hợp chất homoisopogon A (OJ-6) có tác
dụng rất mạnh trên cả 3 dòng tế bào thử nghiệm với giá trị IC50 rất
thấp trong khoảng 0,51 đến 0,66 µM. Đây là hợp chất có khung
homoisoflavanone khá phổ biến trong chi Ophiopogon và được
chứng minh có nhiều hoạt tính sinh học đáng quan tâm. Trong
nghiên cứu này, lần đầu tiên tác dụng gây độc tế bào ung thư của hợp
chất thuộc nhóm này ở nồng độ thấp được công bố. Trong nhóm chất
homoisoflavane một hợp chất thể hiện hoạt tính ức chế trung bình
trên cả ba dòng tế bào ung thư là homoisopogon B (OJ-7) với giá trị
IC50 từ 17,14 đến 32,94 µM. Trong khi đó, homoisopogon C (OJ-8)
ức chế tế bào LU-1 với giá trị IC50 = 27,66 µM. Mối liên quan giữa
cấu trúc và tác dụng gây độc tế bào của các homoisoflavonoid đã
được nghiên cứu và công bố. Theo đó, nhóm 4'-methoxy được xem
là nhóm quyết định, có ảnh hưởng đến tác dụng độc tế bào của lớp
chất này. Trong nghiên cứu này, các homoisoflavonoid có nhóm thế
methoxy ở C-4' đã thể hiện hoạt tính mạnh trên ít nhất một dòng tế
bào ung thư. Trong khi đó, hợp chất homoisopogon D (OJ-9) với sự
17
có mặt của nhóm methylenedioxy ở C-3'/C-4' không thể hiện hoạt
tính ở cả ba dòng tế bào ung thư được nghiên cứu.
Trong số các hợp chất benzofuran thử nghiệm, chỉ duy nhất
OJ-1 có tác dụng gây độc tế bào. Hợp chất này có cấu hình tuyệt đối
ở C-2 được xác định là R, trong khi đó các chất còn lại ở dạng
racemic hoặc thêm nối đôi đều không có hoạt tính. Điều này gợi ý
vai trò quan trọng của cấu hình 2R trong khung 2-benzylbenzofuran.
Hình 115. Tác dụng gây chết theo chương trình OJ-6 trên dòng tế bào A549
Do hợp chất homoisopogon A (OJ-6) có tác dụng gây độc tế
bào ung thư rất mạnh trong đó có dòng ung thư phổi (LU-1), hợp
chất này được tiếp tục thử nghiệm trên dòng tế bào ung thư phổi
kháng thuốc (A549). Kết quả cho thấy hợp chất này ức chế mạnh sự
phát triển của tế bào A549 (IC50 = 6,27 μM) so với thuốc chữa ung
thư camptothecin (IC50 = 12,4 μM). Tiếp đến, hợp chất này được
đánh giá sâu hơn về tác dụng diệt tế bào ung thư A549 theo cơ chế
%
a
p
o
p
to
ti
c
ce
ll
s
18
gây chết theo chương trình (apoptosis) bằng phương pháp trắc lưu tế
bào.
Kết quả trên Hình 115 cho thấy sau 24 giờ ủ với OJ-6 ở
nồng độ 25 μM, tỷ lệ tế b