Đề tài Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình cho học sinh lớp 9 trường THCS Long Giang

Để nắm vững và vận dụng được các kiến thức đã học vào thực tiễn đời sống thì bất cứ môn học nào cũng đòi hỏi học sinh phải có sự nỗ lực cố gắng trong học tập, chịu khó suy nghĩ tìm tòi, có tính kiên trì, nhẫn lại không nản lòng khi gặp khó khăn trong học tập cũng như trong cuộc sống sau này. Có như vậy thì các em mới làm chủ được tri thức khoa học và công nghệ hiện đại, có kỹ năng thực hành giỏi và có tác phong công nghiệp, vận dụng được các kiến thức đã học vào thực tế một cách linh hoạt, sáng tạo là người công dân tốt sống có kỷ luật, người lao động có kỹ thuật nhìn nhận được đâu là đúng, đâu là sai có chân lý rõ ràng. Trong trường phổ thông môn toán chiếm một vị trí khá quan trọng vì nó giúp các em tính toán nhanh, tư duy giỏi, suy luận, lập luận hợp lý lôgic, không những thế nó còn hỗ trợ cho các em học tốt các môn học khác như: vật lý, hóa học, sinh vật, kỹ thuật, địa lý “Dù các bạn có phục vụ ngành nào, trong công tác nào thì kiến thức và phương pháp toán học cũng cần cho các bạn ” (Phạm Văn Đồng) Môn toán là môn học giúp cho học sinh phát triển tư duy do tính trừu tượng, đòi hỏi học sinh phải biết phán đoán, lập luận, suy luận chặt chẽ, là môn học “thể thao của trí tuệ”. Để nắm được kiến thức và vận dụng được các kiến thức đã học đòi hỏi các em phải biết phân tích, tìm tòi, phán đoán qua đó nó đã rèn luyện cho các em trí thông minh sáng tạo. Trong quá trình học tập của học sinh ở trường phổ thông, nó đòi hỏi tư duy rất tích cực của học sinh. Để giúp các em học tập môn toán có kết quả tốt, có rất nhiều tài liệu sách báo đề cập tới. Giáo viên không chỉ nắm được kiến thức, mà điều cần thiết là phải biết vận dụng các phương pháp giảng dạy một cách linh hoạt, truyền thụ kiến thức cho học sinh dễ hiểu nhất. Chương trình toán rất rộng, các em được lĩnh hội nhiều kiến thức, các kiến thức lại có mối quan hệ chặt chẽ với nhau. Do vậy khi học, các em không những nắm chắc lý thuyết cơ bản, mà còn phải biết tự diễn đạt theo ý hiểu của mình, từ đó biết vận dụng để giải từng loại toán. Qua cách giải các bài toán rút ra phương pháp chung để giải mỗi dạng bài, trên cơ sở đó tìm ra các lời giải khác hay hơn, ngắn gọn hơn. Tuy nhiên, trong thực tế một số ít giáo viên chúng ta chỉ chú trọng việc truyền thụ kiến thức đầy đủ theo từng bước, chưa chú ý nhiều đến tính chủ động sáng tạo của học sinh. Thông qua quá trình giảng dạy môn toán lớp 9, đồng thời qua quá trình kiểm tra đánh giá sự tiếp thu của học sinh và sự vận dụng kiến thức để giải bài toán bằng cách lập hệ phương trình của bộ môn đại số lớp 9. Tôi nhận thấy học sinh vận dụng các kiến thức toán học trong phần giải bài toán bằng cách lập hệ phương trình còn nhiều hạn chế và thiếu sót. Đặc biệt là các em rất lúng túng không biết giải bài toán như thế nào? Bắt đầu từ đâu? Hoặc khi đã có một số ý tưởng để giải bài toán thì cách lập luận không rõ ràng, mạch lạc, lời giải khi trình bày chưa thấy được mối tương quan, liên hệ giữa các đối tượng có trong bài. Mặc dù cũng có vài học sinh tìm được các phương trình, giải hệ phương trình tìm đúng kết quả của bài toán nhưng nhìn chung chưa khoa học và chuẩn xác. Do vậy việc hướng dẫn giúp các em có kỹ năng lập các phương trình để giải toán, ngoài việc nắm lý thuyết thì các em phải biết vận dụng thực hành, từ đó phát triển khả năng tư duy, đồng thời tạo hứng thú cho học sinh khi học nhằm nâng cao chất lượng học tập. Mặt khác, giải bài toán bằng cách lập hệ phương trình là nội dung kế thừa của lớp 8. Chỉ khác chăng đó là quá trình giải phương trình bậc nhất hay giải hệ phương trình mà thôi. Vì thế, nếu học sinh nắm vững các bước cơ bản và có kĩ năng giải tốt dạng bài toán bằng cách lập phương trình ở lớp 8 sẽ tạo đà, đặt nền tảng vững chắc, giúp học sinh dễ dàng giải các dạng toán này ở lớp 9. Nhằm góp phần giúp học sinh có một định hướng cụ thể qua từng dạng toán cơ bản, tạo điều kiện giúp học sinh học tập có hiệu quả hơn, tự tin hơn khi gặp một số bài toán dạng này nên tôi quyết định chọn đề tài: “Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình” cho HS lớp 9.

doc31 trang | Chia sẻ: ngtr9097 | Lượt xem: 8978 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đề tài Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình cho học sinh lớp 9 trường THCS Long Giang, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TÓM TẮT ĐỀ TÀI TÊN ĐỀ TÀI: “Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình cho học sinh lớp 9 trường THCS Long Giang”. Họ và tên: Nguyễn Thị Đào Nguyên Đơn vị: Trường THCS Long Giang I. Lý do chọn đề tài: - Yêu cầu đối với học sinh trong thời đại mới. - Vai trò của môn toán trong trường phổ thông. - Thực trạng quá trình học tập của học sinh khi học phần “ Giải bài toán bằng cách lập hệ phương trình”. - Nhằm góp phần giúp học sinh có một định hướng cụ thể qua từng dạng toán cơ bản, tạo điều kiện giúp học sinh học tập có hiệu quả hơn, tự tin hơn khi gặp một số bài toán giải bằng cách lập hệ phương trình nên tôi quyết định chọn đề tài: “ Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình cho học sinh lớp 9 trường THCS Long Giang”. II. Đối tượng – Phương pháp nghiên cứu: Đối tượng nghiên cứu: học sinh lớp 91, 92 trường THCS Long Giang. Phương pháp nghiên cứu: + Nghiên cứu tài liệu. + Phương pháp điều tra. + Giả thuyết khoa học. III. Đề tài đưa ra giải pháp mới: Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình thông qua bước phân tích bài toán, nhằm giúp cho học sinh tìm được các phương trình một cách dễ dàng hơn. IV. Hiệu quả áp dụng: Nếu học sinh nắm vững bước phân tích bài toán thì các em không còn lúng túng khi gặp loại bài này nữa, từ đó các em có niềm tin, say mê, hứng thú trong học toán, tạo cho các em tính tự tin, độc lập suy nghĩ, phát triển tư duy logic và suy luận toán học . V. Phạm vi áp dụng: Những bài toán giải bằng cách lập hệ phương trình đối với học sinh lớp 9 trường THCS Long Giang. Long Giang, ngày….tháng 04 năm 2010 Người thực hiện Nguyễn Thị Đào Nguyên MỞ ĐẦU 1/ Lý do chọn đề tài: Để nắm vững và vận dụng được các kiến thức đã học vào thực tiễn đời sống thì bất cứ môn học nào cũng đòi hỏi học sinh phải có sự nỗ lực cố gắng trong học tập, chịu khó suy nghĩ tìm tòi, có tính kiên trì, nhẫn lại không nản lòng khi gặp khó khăn trong học tập cũng như trong cuộc sống sau này. Có như vậy thì các em mới làm chủ được tri thức khoa học và công nghệ hiện đại, có kỹ năng thực hành giỏi và có tác phong công nghiệp, vận dụng được các kiến thức đã học vào thực tế một cách linh hoạt, sáng tạo là người công dân tốt sống có kỷ luật, người lao động có kỹ thuật nhìn nhận được đâu là đúng, đâu là sai có chân lý rõ ràng. Trong trường phổ thông môn toán chiếm một vị trí khá quan trọng vì nó giúp các em tính toán nhanh, tư duy giỏi, suy luận, lập luận hợp lý lôgic, không những thế nó còn hỗ trợ cho các em học tốt các môn học khác như: vật lý, hóa học, sinh vật, kỹ thuật, địa lý … “Dù các bạn có phục vụ ngành nào, trong công tác nào thì kiến thức và phương pháp toán học cũng cần cho các bạn …” (Phạm Văn Đồng) Môn toán là môn học giúp cho học sinh phát triển tư duy do tính trừu tượng, đòi hỏi học sinh phải biết phán đoán, lập luận, suy luận chặt chẽ, là môn học “thể thao của trí tuệ”. Để nắm được kiến thức và vận dụng được các kiến thức đã học đòi hỏi các em phải biết phân tích, tìm tòi, phán đoán … qua đó nó đã rèn luyện cho các em trí thông minh sáng tạo. Trong quá trình học tập của học sinh ở trường phổ thông, nó đòi hỏi tư duy rất tích cực của học sinh. Để giúp các em học tập môn toán có kết quả tốt, có rất nhiều tài liệu sách báo đề cập tới. Giáo viên không chỉ nắm được kiến thức, mà điều cần thiết là phải biết vận dụng các phương pháp giảng dạy một cách linh hoạt, truyền thụ kiến thức cho học sinh dễ hiểu nhất. Chương trình toán rất rộng, các em được lĩnh hội nhiều kiến thức, các kiến thức lại có mối quan hệ chặt chẽ với nhau. Do vậy khi học, các em không những nắm chắc lý thuyết cơ bản, mà còn phải biết tự diễn đạt theo ý hiểu của mình, từ đó biết vận dụng để giải từng loại toán. Qua cách giải các bài toán rút ra phương pháp chung để giải mỗi dạng bài, trên cơ sở đó tìm ra các lời giải khác hay hơn, ngắn gọn hơn. Tuy nhiên, trong thực tế một số ít giáo viên chúng ta chỉ chú trọng việc truyền thụ kiến thức đầy đủ theo từng bước, chưa chú ý nhiều đến tính chủ động sáng tạo của học sinh. Thông qua quá trình giảng dạy môn toán lớp 9, đồng thời qua quá trình kiểm tra đánh giá sự tiếp thu của học sinh và sự vận dụng kiến thức để giải bài toán bằng cách lập hệ phương trình của bộ môn đại số lớp 9. Tôi nhận thấy học sinh vận dụng các kiến thức toán học trong phần giải bài toán bằng cách lập hệ phương trình còn nhiều hạn chế và thiếu sót. Đặc biệt là các em rất lúng túng không biết giải bài toán như thế nào? Bắt đầu từ đâu? Hoặc khi đã có một số ý tưởng để giải bài toán thì cách lập luận không rõ ràng, mạch lạc, lời giải khi trình bày chưa thấy được mối tương quan, liên hệ giữa các đối tượng có trong bài. Mặc dù cũng có vài học sinh tìm được các phương trình, giải hệ phương trình tìm đúng kết quả của bài toán nhưng nhìn chung chưa khoa học và chuẩn xác. Do vậy việc hướng dẫn giúp các em có kỹ năng lập các phương trình để giải toán, ngoài việc nắm lý thuyết thì các em phải biết vận dụng thực hành, từ đó phát triển khả năng tư duy, đồng thời tạo hứng thú cho học sinh khi học nhằm nâng cao chất lượng học tập. Mặt khác, giải bài toán bằng cách lập hệ phương trình là nội dung kế thừa của lớp 8. Chỉ khác chăng đó là quá trình giải phương trình bậc nhất hay giải hệ phương trình mà thôi. Vì thế, nếu học sinh nắm vững các bước cơ bản và có kĩ năng giải tốt dạng bài toán bằng cách lập phương trình ở lớp 8 sẽ tạo đà, đặt nền tảng vững chắc, giúp học sinh dễ dàng giải các dạng toán này ở lớp 9. Nhằm góp phần giúp học sinh có một định hướng cụ thể qua từng dạng toán cơ bản, tạo điều kiện giúp học sinh học tập có hiệu quả hơn, tự tin hơn khi gặp một số bài toán dạng này nên tôi quyết định chọn đề tài: “Rèn kĩ năng giải bài toán bằng cách lập hệ phương trình” cho HS lớp 9. 2/ Đối tượng nghiên cứu: Học sinh lớp 9 trường THCS Long Giang, năm học 2009-2010 3/ Phạm vi nghiên cứu: Do thời gian nghiên cứu có hạn nên tôi chỉ áp dụng sáng kiến này đối với 2 lớp 91, 92 trường THCS Long Giang. 4/ Phương pháp nghiên cứu: a/ Nghiên cứu tài liệu: thu thập kinh nghiệm từ tạp chí giáo dục, từ các sách tham khảo, tài liệu chuyên môn. b/ Phương pháp điều tra: Tham khảo ý kiến cũng như phương pháp giảng dạy của đồng nghiệp thông qua các buổi sinh hoạt chuyên môn, dự giờ thăm lớp. Trò chuyện với học sinh về việc giải bài toán bằng cách lập hệ phương trình. Điều tra khảo sát kết quả học tập của học sinh Thực nghiệm dạy ở lớp 91, 92 trường THCS Long Giang. Đánh giá kết quả học tập của học sinh sau khi dạy thực nghiệm thông qua kết quả kiểm tra một tiết và bài thi khảo sát chất lượng giữa HKII c/ Giả thuyết khoa học: Để có thể học tốt dạng toán này thì học sinh phải nắm vững các kiến thức liên quan. Từ những bài toán thực tế giáo viên giúp học sinh thất được toán học gắn liền với đời sống thực tế, toán học không phải là những con số khô khan, không biết nói. Nhờ vào tán học giúp chúng ta giải được các bài tón thực tế, đáp ứng được nhu cầu phát triển chung của xã hội; giúp ta định hướng được các công việc cần làm, tìm được lời giải tối ưu, mang lại hiệu quả thiết thực cho cuộc sống. Bản thân giáo viên phải tích cực chuẩn bị các bài tập thật phong phú và đa dạng, đưa học sinh vào các tình huống có vấn đề, muốn tìm được đáp số của bài toán đặt ra cần thấy được các mối liên hệ giữa các đối tượng có trong bài, tích cực suy nghĩ, tích cực trao đổi với nhóm hoặc với giáo viên nhằm tìm được kết quả sau cùng. Khẳng định cho học sinh thấy được nếu tiếp thu tốt các kiến thức toán học ta có thể học tốt các môn khoa học tự nhiên và khoa học xã hội từ những bài toán có liên quan đến hóa học, vật lý hay các câu đố vui dân gian,… B- NỘI DUNG 1/ Cơ sở lí luận: Mục tiêu giáo dục trong giai đoạn hiện nay là phải đào tạo ra con người có trí tuệ phát triển, giàu tính sáng tạo và nhân văn cao. Để đào tạo ra lớp người như vậy thì nghị quyết trung ương IV khóa VII năm 1993 đã xác định: “áp dụng phương pháp giáo dục hiện đại để bồi dưỡng cho học sinh năng lực tư duy, sáng tạo, năng lực giải quyết vấn đề”. Nghị quyết trung ương II khóa VIII tiếp tục khẳng định “Phải đổi mới giáo dục đào tạo, khắc phục lối truyền thụ một chiều, rèn luyện thành nề nếp tư duy sáng tạo của người học, từng bước áp dụng các phương pháp tiên tiến, phương tiện hiện đại vào quá trình dạy học, dành thời gian tự học, tự nghiên cứu cho học sinh ”. Định hướng này đã được pháp chế hóa trong luật giáo dục điều 24 mục II đã nêu “Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh, phải phù hợp với đặc điểm của từng môn học, rèn luyện kĩ năng vận dụng kiến thức vào thực tiễn, tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh”. Trong đó, toán học có vai trò quan trọng đối với đời sống và đối với các ngành khoa học khác. Nhà tư tưởng Bê-Cơn đã nói rằng: “Ai không hiểu toán học thì không thể hiểu biết một khoa học nào khác và cũng không thể phát hiện ra sự dốt nát của chính bản thân mình”. Sự phát triển của khoa học cũng đã chứng minh lời tiên đoán của Các Mác: “Một khoa học chỉ thật sự phát triển nếu nó có thể sử dụng được những phương pháp nghiên cứu của toán học”. Do vai trò của toán học trong đời sống và trong công nghệ hiện đại, các kiến thức và phương pháp toán học được xem là công cụ thiết yếu giúp học sinh học tốt các môn học khác, giúp học sinh hoạt động có hiệu quả hơn trong mọi lĩnh vực. Với vai trò mạnh mẽ của toán học nên yêu cầu đặt ra là phải làm cho học sinh nắm được các kiến thức toán học một cách chính xác, vững chắc và có hệ thống, có năng lực vận dụng các kiến thức đó để giải quyết các bài toán thực tế. Muốn vậy thì học sinh phải có phương pháp học tập thích hợp. Trong việc đổi mới phương pháp dạy học thì học sinh đóng vai trò chủ động trong việc tìm hiểu tri thức qua sự dẫn dắt, hướng dẫn của giáo viên. 2/ Cơ sở thực tiễn: Qua quá trình giảng dạy và đánh giá kết quả thực tế từ các bài kiểm tra qua các năm đứng lớp cho thấy: chỉ khoảng 20% học sinh giải tốt dạng toán này, khoảng 30% học sinh tìm được kết quả nhưng chưa trình bày rõ ràng và mạch lạc, khoảng 50% học sinh còn lại bỏ trắng cả bài vì không biết phải bắt đầu giải như thế nào? Có chăng là chép loáng thoáng từ các bài giải của bạn mà không có mở đầu và kết thúc. Từ thực tế trên cho thấy cần phải hình thành lại một số kĩ năng cơ bản: về cách lập luận, chọn ẩn số, thể hiện được mối liên quan giữa các đối tượng để thiết lập hệ phương trình, tìm lời giải cho bài toán là một yêu cầu thiết thực và tất yếu. 3/ Nội dung vấn đề: Xuất phát từ thực tế là các em học sinh ngại khó khi giải các bài toán, tôi thấy cần phải tạo ra cho các em có niềm yêu thích say mê học tập, luôn tự đặt ra những câu hỏi và tự mình tìm ra câu trả lời. Khi gặp các bài toán khó, phải có nghị lực, tập trung tư tưởng, tin vào khả năng của mình trong quá trình học tập. Để giúp học sinh bớt khó khăn và cảm thấy dễ dàng hơn trong việc “Giải bài toán bằng cách lập hệ phương trình” ở lớp 9, tôi thấy cần phải phân loại các dạng bài tập khác nhau. Mỗi dạng bài tập đều hướng dẫn học sinh cách lập các phương trình rồi giải hệ phương trình một cách thành thạo. Điều quan trọng là các em phải biết phương pháp giải từng dạng bài tập. Việc này đòi hỏi chúng ta phải tích cực quan tâm thường xuyên, không chỉ giúp các em nắm vững lý thuyết mà còn phải tạo ra cho các em có một phương pháp học tập, rèn cho các em có khả năng thực hành. Nếu làm được điều đó chắc chắn kết quả học tập của các em sẽ tiến bộ. “Giải bài toán bằng cách lập hệ phương trình” là phiên dịch bài toán từ ngôn ngữ thông thường sang ngôn ngữ đại số rồi dùng các phép biến đổi đại số để tìm ra đại lượng chưa biết thỏa mãn điều kiện bài cho. 3.1- ĐƯỜNG LỐI CHUNG ĐỂ GIẢI bài toán bẰNG cách lẬP hỆ phương trình : Trước hết phải cho các em nắm được các bước để “Giải bài toán bằng cách lập hệ phương trình” Bước 1 : Lập hệ phương trình gồm các công việc : - Chọn ẩn số, chú ý ghi rõ đơn vị và đặt điều kiện cho ẩn số (Nếu có). - Biểu thị các đại lượng chưa biết khác theo ẩn. - Dựa vào các dữ kiện và điều kiện của bài toán để lập hệ phương trình. Bước 2 : Giải hệ phương trình. Tùy theo từng dạng hệ phương trình mà chọn cách giải thích thích hợp và ngắn gọn. Bước 3 : Nhận định kết quả và trả lời. Chú ý so sánh với điều kiện đặt ra cho ẩn xem có thích hợp không (Vì các em đặt điều kiện cho ẩn đôi khi thiếu chặt chẽ). Chú ý: Bước 1 có tính chất quyết định nhất. Thường đầu bài hỏi số liệu gì thì ta đặt cái đó là ẩn số. Xác định đơn vị đo và điều kiện của ẩn phải phù hợp với ý nghĩa thực tiễn. Tuy nhiên một vài trường hợp ta phải chọn ẩn trung gian. Ví dụ: Bài toán yêu cầu tính chu vi hình chữ nhật thì ta có thể gọi ẩn là chiều dài, chiều rộng của hình chữ nhật. Hoặc đề bài yêu cầu tính quãng đường AB thì ta có thể gọi ẩn là vận tốc và thời gian đi từ A đến B…. 3.2- PHÂN TÍCH BÀI TOÁN : - Trong quá trình giảng dạy và hướng dẫn các em giải bài tập, giáo viên phải phân ra từng loại toán, giới thiệu đường lối chung từng loại, các công thức, các kiến thức có liên quan từng loại bài. Ở lớp 9 các em thường gặp các loại bài như : Loại toán : Bài toán về chuyển động. Bài tập năng suất lao động. Bài toán liên quan đến số học và hình học. Bài toán có nội dung vật lý - hóa học. Bài toán về công việc làm chung và làm riêng. Bài toán về tỷ lệ, chia phần. Khi bắt tay vào giải bài tập, một yêu cầu không kém phần quan trọng, đó là phải đọc kỹ đề bài, tự mình biết ghi tóm tắt đề bài, nếu tóm tắt được đề bài là các em đã hiểu được nội dung, yêu cầu của bài, từ đó biết được đại lượng nào đã biết, đại lượng nào chưa biết, mối quan hệ giữa các đại lượng. Cần hướng dẫn cho các em như tóm tắt đề bài như thế nào để làm toán, lên dạng tổng quát của phương trình, ghi được tóm tắt đề bài một cách ngắn gọn, toát lên được dạng tổng quát của phương trình thì các em sẽ lập được các phương trình dễ dàng. Đến đây coi như đã giải quyết được một phần lớn bài toán rồi. Khó khăn nhất đối với học sinh là bước lập hệ phương trình, các em không biết chọn đối tượng nào là ẩn, rồi điều kiện của ẩn ra sao? Điều này có thể khắc sâu cho học sinh là ở những bài tập đơn giản thì thường thường “bài toán yêu cầu tìm đại lượng nào thì chọn đại lượng đó là ẩn”. Còn điều kiện của ẩn dựa vào nội dung ý nghĩa thực tế của bài song cũng cần phải biết được nên chọn đối tượng nào là ẩn để khi lập ra phương trình bài toán, ta giải dễ dàng hơn. Muốn lập được phương trình bài toán không bị sai thì một yêu cầu quan trọng nữa là phải nắm chắc đối tượng tham gia vào bài, mối quan hệ của các đối tượng này lúc đầu như thế nào? lúc sau như thế nào? Ø Chẳng hạn khi giải bài toán : Phân tích: Ở đây, ta gặp các đại lượng: Số tấn cá đánh bắt trong tuần ( đã biết), tổng số tấn cá và số tuần đánh bắt (chưa biết): theo kế hoạch và thực tế đã thực hiện. Chúng ta có quan hệ: (Số tấn cá đánh bắt trong tuần) x (số tuần đánh bắt) = Tổng số tấn cá. Ta chọn ẩn là một trong các đại lượng chưa biết. Ở đây, ta chọn x là số tuần đánh bắt theo kế hoạch và y là tổng số tấn cá đánh bắt theo kế hoạch (ẩn được đề xuất) để chuyển bài toán về hệ phương trình bậc nhất hai ẩn. Quy luật trên cho phép ta lập bảng biểu thị mối quan hệ giữa các đại lượng trong bài toán ( Giáo viên kẻ bảng và hướng dẫn học sinh điền vào bảng) Số tấn cá đánh bắt trong 1 tuần Số tuần Tổng số tấn cá Theo kế hoạch 20 x y Đã thực hiện 26 x - 1 y+10 Khi đó: Phương trình (1) được thiết lập dựa trên địnnh mức trong kế hoạch Phương trình (2) được thiết lập dựa trên việc thực hiện kế hoạch trong thực tế 20x = y 26(x-1)=y+10 Như vậy theo điều kiện đề bài ta có hệ phương trình: Ở chương trình lớp 9 thường gặp các bài toán về dạng chuyển động ở dạng đơn giản như : Chuyển động cùng chiều, ngược chiều trên cùng quãng đường… hoặc chuyển động trên dòng nước. Do vậy, trước tiên cần cho học sinh nắm chắc các kiến thức, công thức liên quan, đơn vị các đại lượng. Trong dạng toán chuyển động cần phải hiểu rõ các đại lượng quãng đường, vận tốc, thời gian, mối quan hệ của chúng qua công thức . Từ đó suy ra: ; Do đó, khi giải nên chọn 1 trong 3 đại lượng làm ẩn Dạng toán chuyển động cũng có thể chia ra nhiều dạng và lưu ý: -Chuyển động cùng chiều trên cùng một quãng đường đến khi gặp nhau thì: (S) ôtô 1 đi = (S) ôtô 2 đi Nếu hai xe cùng xuất phát mà ô tô 1 đến trước ôtô 2 là t giờ thì: (t) ôtô 2 đi – (t) ôtô 1 đi = t -Chuyển động ngược chiều trên cùng một quãng đường thì: (S) ôtô 1 đi + (S) ôtô 2 đi = S Nếu hai xe gặp nhau ở chính giữa quãng đường AB thì: (S) ôtô 1 đi = (S) ôtô 2 đi -Chuyển động trên dòng sông: Vxuôi dòng = VRiêng + V dòng nước Vngược dòng = VRiêng - V dòng nước -Chuyển động trên cùng một đường tròn: Hai vật xuất phát tại một điểm sau t giờ gặp nhau: +Chuyển động cùng chiều: Độ dài đường tròn (S) = (t).(v1-v2) (Giả sử v1, v2 là vận tốc của hai vật, v1>v2) +Chuyển động ngược chiều: Độ dài đường tròn (S) =(t).(v1+v2) Ví dụ: Một người đi từ A đến B gồm quãng đường AC và CB hết thời gian là 4 giờ 20 phút. Tính quãng đường AC và CB biết rằng vận tốc của người đó trên AC là 30 km/h, trên CB là 20 km/h và quãng đường AC ngắn hơn CB là 20km. * Phân tích: Đối với dạng toán này, GV cần hướng dẫn HS tóm tắt bài toán bằng sơ đồ hình vẽ: A C B y(km) x(km) vAC = 30 km/h; vCB = 20km/h tAB=4 giờ 20 phút = (giờ) SBC – SAC = 20 (km) Sau đó GV hướng dẫn HS lập bảng phân tích thông qua các câu hỏi: v (km/h) t (h) S (km) Quãng đường AC 30 x Quãng đường CB 20 y Quãng đường AB Theo đề bài ta biết được những ô nào? HS: vAC, vCB, tAB Đề bài yêu cầu tìm đại lượng nào? HS:Quãng đường AC và CB Hãy chọn các đại lượng đó là ẩn (SAC : x(km), SCB : y (km), đk 0<x<y) Quãng đường AC ngắn hơn CB là 20 km, ta có phương trình thế nào? HS:y – x = 20 hay –x + y = 20 (1) Biết quãng đường và vận tốc đi trên mỗi quãng đường, ta tính được đại lượng nào? HS:thời gian đi trên mỗi quãng đường Vì thời gian đi tổng cộng là 4 giờ 20 phút = (giờ) nên ta có phương trình thế nào? HS: (2) Từ (1) và (2) ta đã tìm được hệ phương trình của bài toán Sau khi phân tích xong, giáo viên cần cho học sinh thấy rằng : Như ta đã phân tích ở trên thì bài toán này còn có thời gian đi trên mỗi quãng đường chưa biết, nên ngoài việc chọn quãng đường là ẩn, ta cũng có thể chọn thời gian đi trên mỗi quãng đường là ẩn Nếu gọi thời gian đi trên quãng đường AC là x (km), đk x>0 Thời gian đi trên quãng đường CB là y (km), đk y>0 Khi đó ta có bảng phân tích như sau: v (km/h) t (h) S (km) Quãng đường AC 30 x 30x Quãng đường CB 20 y 20y Quãng đường AB Vì thời gian đi tổng cộng là 4 giờ 20 phút = (giờ) nên ta có phương trình thế nào? HS: x + y = (1) Quãng đường AC ngắn hơn CB là 20 km, ta có phương trình thế nào? x + y = -30x + 20y =20 HS: 20y – 30x = 20 hay -30x + 20y =20 (2) Từ (1) và (2) ta có hệ phương trình: Giải hệ phương trình này ta sẽ tìm được x và y Đến đây học sinh dễ mắc sai lầm là dừng lại trả lời kết quả bài toán Do đó cần khắc sâu cho các em thấy được bài toán yêu cầu tìm quãng đường nên khi có thời gian rồi phải tìm quãng đường. vTóm lại : Khi giải dạng toán chuyển động, trong bài có nhiều đại lượng chưa biết, nên ở bước lập hệ phương trình ta tùy ý lựa chọn một trong các đại lượng chưa biết làm ẩn. Nhưng ta nên chọn trực tiếp đại lượng bài toán yêu cầu cần phải tìm là ẩn nhằm tránh những thiếu sót khi trả lời kết quả. Song thực tế không phải bài nào ta cũng chọn được trực tiếp đại lượng phải tìm là ẩn mà có thể phải chọn đại lượng trung gian là ẩn. Đối với bài toán “làm chung – làm riêng một công việc” giáo viên cần cung cấp cho học sinh một số kiến thức liên quan như : - Khi công việc không được đo bằng số lượng cụ thể, ta coi toàn bộ công việc là 1 đơn vị công việc biểu thị bởi số 1. - Năng suất làm việc là phần việc làm được trong 1 đơn vị thời gian. Ta có công thức A = nt ; Trong đó: A : Khối lượng công việc n : Năng suất làm việc t : Thời gian làm việc - Tổng năng suất riêng bằng năng suất chung khi cùng làm. - Biết tìm năng suất làm việc như thế n