Tiểu luận Lý thuyết thăng giáng

1.1. Lí do chọn đề tài Vật lý thống kê là một ngành trong vật lý lý thuyết, áp dụng các phương pháp thống kê để giải quyết các bài toán liên quan đến các hệ chứa một số rất lớn những phần tử, có số bậc tự do cao đến mức không thể giải chính xác bằng cách theo dõi từng phần tử, mà phải giả thiết các phần tử có tính hỗn loạn và tuân theo các quy luật thống kê. Một trong các vấn đề của vật lý thống kê là ký thuyết thăng giáng. Khi hệ nằm trong trạng thái cân bằng, trên thực tế, các đại lượng vật lý bất kỳ F(x) không phải là không đổi mà liên tục biến đổi ở gần giá trị trung bình F của nó. Trong các phần nhỏ của một hệ thức bất kỳ, hoặc là sau một khoảng thời gian nhỏ, do chuyển động của hạt vi mô của các hạt, có xảy ra biến thiên tự phát của các thông số vĩ mô. Các độ lêch ngẫu nhiên tồn tại trong hệ một cách liên tục này của các đại lượng vật lý so với trị số trung bình được gọi là các thăng giáng. Người đầu tiên nghiên cứu vấn đề thăng giáng là Albert Einstein khi ông nghiên cứu hiệu ứng kích thước nguyên tử hữu hạn tác động đến hiện tượng tán xạ vào năm 1903 và 1904. Và sau đó ông đưa ra lý thuyết về chuyển động Brown. Đây là bài báo đầu tiên về vật lý thống kê. Việc tìm xác suất xuất hiện một trị số tuyệt đối nào đó của thăng giáng là một trong các vấn đề cơ bản của lý thuyết thăng giáng. Dựa vào thăng giáng người ta giải thích được nhiều hiện tượng vật lý như: tán xạ của ánh sáng, sự xuất hiện của các dòng không đều trong các mạch có suất điện động. Các thăng giáng đã đặt giới hạn cho độ nhạy của máy đo khác nhau Nhằm mục đích hiểu rõ hơn về những vấn đề trên nên em chọn đề tài “Lý thuyết thăng giáng”. 1.2. Mục đích nghiên cứu Đề tài này nghiên cứu nhằm hệ thống lại một số kiến thức về lý thuyết thăng giáng và ứng dụng vào giải một số bài tập liên quan. 1.3. Phương pháp nghiên cứu Để hoàn thành tiểu luận này cần phải sử dụng các phương pháp phân tích, tổng hợp và vận dụng các kiến thức để tính toán triển khai công thức và giải các bài tập cụ thể. 1.4. Giới hạn đề tài Đề tài nghiên cứu một số vấn đề của lý thuyết thăng giáng về định nghĩa, thăng giáng thống kê ở hệ cân bằng, các phương pháp xác định thăng giáng, một số úng dụng và một số bài tập điển hình. 1.5. Bố cục đề tài Tiểu luận chia làm 3 phần Phần mở đầu nêu rõ lý do chọn đề tài, mục đích, nhiệm vụ, phương pháp nghiên cứu và giới hạn đề tài. Phần thứ hai là phần nội dung chính của đề tài. Phần thứ ba là kết luận và tài liệu tham khảo.

doc42 trang | Chia sẻ: tuandn | Lượt xem: 3528 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Tiểu luận Lý thuyết thăng giáng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
PHẦN 1 MỞ ĐẦU 1.1. Lí do chọn đề tài Vật lý thống kê là một ngành trong vật lý lý thuyết, áp dụng các phương pháp thống kê để giải quyết các bài toán liên quan đến các hệ chứa một số rất lớn những phần tử, có số bậc tự do cao đến mức không thể giải chính xác bằng cách theo dõi từng phần tử, mà phải giả thiết các phần tử có tính hỗn loạn và tuân theo các quy luật thống kê. Một trong các vấn đề của vật lý thống kê là ký thuyết thăng giáng. Khi hệ nằm trong trạng thái cân bằng, trên thực tế, các đại lượng vật lý bất kỳ F(x) không phải là không đổi mà liên tục biến đổi ở gần giá trị trung bình F của nó. Trong các phần nhỏ của một hệ thức bất kỳ, hoặc là sau một khoảng thời gian nhỏ, do chuyển động của hạt vi mô của các hạt, có xảy ra biến thiên tự phát của các thông số vĩ mô. Các độ lêch ngẫu nhiên tồn tại trong hệ một cách liên tục này của các đại lượng vật lý so với trị số trung bình được gọi là các thăng giáng. Người đầu tiên nghiên cứu vấn đề thăng giáng là Albert Einstein khi ông nghiên cứu hiệu ứng kích thước nguyên tử hữu hạn tác động đến hiện tượng tán xạ vào năm 1903 và 1904. Và sau đó ông đưa ra lý thuyết về chuyển động Brown. Đây là bài báo đầu tiên về vật lý thống kê. Việc tìm xác suất xuất hiện một trị số tuyệt đối nào đó của thăng giáng là một trong các vấn đề cơ bản của lý thuyết thăng giáng. Dựa vào thăng giáng người ta giải thích được nhiều hiện tượng vật lý như: tán xạ của ánh sáng, sự xuất hiện của các dòng không đều trong các mạch có suất điện động. Các thăng giáng đã đặt giới hạn cho độ nhạy của máy đo khác nhau… Nhằm mục đích hiểu rõ hơn về những vấn đề trên nên em chọn đề tài “Lý thuyết thăng giáng”. 1.2. Mục đích nghiên cứu Đề tài này nghiên cứu nhằm hệ thống lại một số kiến thức về lý thuyết thăng giáng và ứng dụng vào giải một số bài tập liên quan. 1.3. Phương pháp nghiên cứu Để hoàn thành tiểu luận này cần phải sử dụng các phương pháp phân tích, tổng hợp và vận dụng các kiến thức để tính toán triển khai công thức và giải các bài tập cụ thể. 1.4. Giới hạn đề tài Đề tài nghiên cứu một số vấn đề của lý thuyết thăng giáng về định nghĩa, thăng giáng thống kê ở hệ cân bằng, các phương pháp xác định thăng giáng, một số úng dụng và một số bài tập điển hình. 1.5. Bố cục đề tài Tiểu luận chia làm 3 phần Phần mở đầu nêu rõ lý do chọn đề tài, mục đích, nhiệm vụ, phương pháp nghiên cứu và giới hạn đề tài. Phần thứ hai là phần nội dung chính của đề tài. Phần thứ ba là kết luận và tài liệu tham khảo. PHẦN 2 NỘI DUNG CHƯƠNG I. MỘT SỐ VẤN ĐỀ CỦA LÝ THUYẾT THĂNG GIÁNG I.1. Định nghĩa thăng giáng Một số định nghĩa cơ bản F(x) là trị tức thời của một đại lượng vật lý; là trị trung bình;  là độ lệch khỏi trị trung bình, đồng thời   là bình phương của độ lệch khỏi thị trung bình;  là trị trung bình của bình phương độ lệch hay phương sai ;  là độ lệch quân phương khỏi vị trí trung bình; Để đánh giá gần đúng độ thăng giáng của một đại lượng vật lý, người ta dùng độ lệch quân phương của nó. Thông thường như vậy là đủ. Nhưng đôi khi để đánh giá độ thăng giáng người ta có thể dùng độ lệch có bậc cao hơn, thí dụ độ lệch trung bình bậc bốn. Độ thăng giáng của một đại lượng vật lý tính theo độ lệch quân phương là bằng  (I.1) Đôi khi, thay cho trị tuyệt đối của độ thăng giáng người ta đưa vào độ thăng giáng tương đối, được xác đinh như sau  (I.2) Việc xác định độ thăng giáng qua độ lệch quân phương làm cho việc đánh giá độ lớn của nó được dễ dàng. Thực vậy, độ lệch quân phương (hay phương sai ), cũng như phương sai là đại lượng ngẫu nhiên. Đại lượng ngẫu nhiên đó phân bố gần trị trung bình  theo định luật chuẩn (định luật phân bố Gaoxơ)  (I.3) Định luật đó chỉ rằng ta sẽ gặp độ lệch lớn hơn độ lệch quân phương hiếm hơn rất nhiều so với các độ lệch nhỏ. Vì vậy, độ lệch quân phương cho ta hình dung được cỡ của độ thăng giáng một đại lượng vật lý ngẫu nhiên nào đó. Phân tích (I.1) ta sẽ có cực đại càng hẹp nếu phương sai  càng nhỏ. Chắc chắn rằng, có thể có những độ lệch rất lớn hơn độ lệch quân phương, nhưng chúng có xác suất rất nhỏ và vì vậy chúng sẽ không gây ảnh hưởng đáng kể tới các tính chất của hệ.(hình vẽ ) Như vậy, để đánh giá thăng giáng trong hệ, ta cần phải biết trung bình của bình phương độ lệch của một đại lượng vật lý (đặc trưng cho hệ) mà ta có thể xác định, chẳng hạn như theo công thức sau  Trong đó  là trung bình của bình phương của đại lượng đó, còn là bình phương của trị trung bình. Trị trung bình của một đại lượng vật lý được xác định từ thí nghiệm, còn trung bình của bình phương thì thường là chưa biết. Trong một hệ bất kỳ thường có các thăng giáng của nhiều đại lượng vật lý. Khi đó, đối với hai đại lượng bất kỳ trong số đó, ngoài việc tính các độ lệch quân phương  và , ta thường xét đại lượng  Đại lượng đó được gọi là tương quan của hai đại lượng  và  bởi vì nó nói lên mối quan hệ tương hỗ của hai đại lượng ngẫu nhiên đó. Nếu các đại lượng ngẫu nhiên  và  là độc lập thì tương quan của chúng bằng không. Và ngược lại, nếu tương quan của hai đại lượng nào đó,  và , là bằng không  thì đại lượng đó được xem là độc lập. I.2: Thăng giáng thống kê ở hệ cân bằng Ta đã thấy rằng trong một hệ vật lý ở trạng thái cân bằng, trong khi các giá trị của các tham số ngoại được xác định từ điều kiện bên ngoài, thì các biến số nội của hệ lại luôn có những giá trị chịu những biến thiên quanh giá trị trung bình, đó chính là thăng giáng nội tại. I.2.1: Thăng giáng của mật độ hạt 1. Thăng giáng số hạt của một hệ nhỏ Xét một hệ S có một thể tích nhỏ V xác định trong một hệ , hệ S có thể trao đổi nhiệt và trao đổi hạt với phần còn lại của , phần còn lại này đóng vai trò hệ điều nhiệt và hệ trữ hạt. Ta cho hệ S có nhiệt độ T và thế hóa học . Như ta đã biết, khi ở trạng thái cân bằng, xác suất  để S ở trạng thái vi mô  có năng lượng  và có số hạt  là:  (I.2.1a) trong đó, Z là hàm tổng thống kê lớn  (I.2.2b) Số hạt trung bình trong thể tích V là:  (I.2.3a) Và  (I.2.3b) Lấy đạo hàm biểu thức (I.2.3a) theo ta có:  (I.2.4) Từ đó ta có:  (I.2.5) Sự thăng giáng của số hạt trong hệ S được tính bằng hệ thức :  (I.2.6) Hay  ( Áp dụng cho khí hệ lý tưởng Với khí lý tưởng đơn nguyên tử, ta có công thức tính năng lượng tự do là  (I.2.7) Do đó thế hóa học là:  (I.2.8) Như vậy  (I.3.9) Và ta tính được độ thăng giáng tương đối tỷ lệ nghịch với .  (I.2.10) 2. Thăng giáng thể tích một hệ nhỏ Để xét thăng giáng của thể tích của một hệ nhỏ s là một phần của hệ S, ta xác định số hạt của hệ s không đổi và cho s tiếp xúc nhiệt và cơ với phần còn lại của S. Phần còn lại này sẽ ấn định cho hệ s nhiệt độ T và áp suất p; ta gọ đó là tập hợp T-p. Ta có áp suất  để hệ s ở trạng thái cân bằng có thể tích trong khoảng V đến V+dV và có trạng thái vi mô  có năng lượng  là:  (I.2.11) Với  (I.2.12) Vậy ta có:  (I.2.13)  (I.2.14) Vậy:  (I.2.15) Áp dụng cho khí lý tưởng: Từ phương trình trạng thái pV = NkT ta có . Từ (I.2.15) ta được:  Vậy:  (I.2.16) 3. Thăng giáng cục bộ Trong thực tế người ta của mật độ hạt cục bộ trong thể tích V được định nghĩa:  (I.2.17) Thăng giáng có thể tính bởi phương pháp của phần I.2.1, tức là giữ thể tích V xác định cho ta kết quả:  (I.2.18) Hoặc bởi phương pháp cho N xác định như trong phần I.2.2:  (I.2.19) Hai kết quả trên là tương đương, vì thực tế ta có hệ thức  (I.2.20) Thực vậy, một mặt ta có:  (I.2.21) Mặt khác:  (I.2.22) Nhưng vì năng lượng tự do F là đại lượng cộng tính  nên  Tương tự ta cũng có:  So sánh biểu thức trên với (I.2.21), (I.2.22) ta tìm được (I.2.20). I.2.2: Thăng giáng của năng lượng I.2.2.1. Sự tương hợp giữa năng lượng và thể tích Để đánh giá được nhưng thăng giáng thống kê của năng lượng, ta có thể sử dụng một trong hai phương pháp: hoặc ta xác định thể tích V của hệ nhỏ S, là một phần của hệ S, hoặc ta cho số hạt N có giá trị định trước. Tất nhiên là hai phương pháp cùng dẫn đến một hệ quả vật lý cho năng lượng. Ở đây ta sẽ dùng phương pháp thứ hai, cho xác định số hạt N. khi này, ta có tập hợp T-p, và phân bố thống kê của các trạng thái vi mô được xác định bởi hệ thức (I.2.11). Để tính được thăng giáng của năng lượng E, ta phải xét mối liên hệ giữa E và V, xác định bởi:  (I.2.23) Để có kết quả đánh giá mối tương quan trên ta đi tính trị trung bình của đại lượng V(E+pV):  (I.2.24) Với Z được tính bởi hệ thức (I.2.12). Ta có thể thấy rằng như vậy  (I.2.25) Mặt khác ta có thể tính ở (I.2.13), ta có  (I.2.26) Vậy:  (I.2.27) Và từ hệ thức tính đã có ở (I.2.15) ta có hệ thức cho thấy sự tương quan giữa năng lượng và thể tích:  (I.2.28) I.2.2.2. Thăng giáng năng lượng theo CP Để tính được thăng giáng của năng lượng ta bắt đầu bằng cách tính thăng giáng của đại lượng E+pV = H là entalpi cuả hệ. ta có:  (I.2.29) và  (I.2.30) Như vậy:  (I.2.31) Mặt khác ta lại có nhiệt dung đẳng áp có thể được tính bởi:  (I.2.32) (thật vậy, từ  ta có  vì  nên  mặt khác  do đó ta thu được biểu thức (I.2.32).) vậy:  (I.2.33) nhưng đồng thời ta có   (I.2.34)  Từ (I.2.15), (I.2.23), (I.2.28) và (I.2.33) ta có    Thay vào biểu thức tính  ta có :    (I.2.35) Biểu thức (I.2.35) là công thức tính độ thăng giáng của năng lượng theo nhiệt dung đẳng áp. I.2.2.3. Thăng giáng theo nhiệt dung đẳng tích Cv Để có thể tính  theo nhiệt dung đẳng tích Cv thay vì theo Cp như ở công thức (I.2.35) ở trên, ta đi tìm hệ thức giữa Cp và Cv . Muốn vậy từ nhận xét rằng các vi phân của năng lượng và entalpi có dạng tổng quát  ta suy ra được  (I.2.36)  (I.2.37) Ta thực hiện phép biến đổi của hàm S:  Vì V là hàm của các biến T, p và N thông qua phương trình trạng thái. Vậy:  Và như vậy, ta thu được hệ thức Mayer:  (I.2.38) Mặt khác, từ phương trình trạng thái, ta có:  (I.2.39) Thật vậy, theo phương trình trạng thái thì p là một hàm của thể tích và nhiệt độ. Nên ta có:  Cho  và lúc đó ta có:  Thế vào biểu thức  ta có  Hệ thức Mayer trở thành:  (I.2.40) Ta thế biểu thức (I.2.40) vào biểu thức (I.2.35) ta có :  (I.2.41) ( Áp dụng cho khí lý tưởng Trong trường hợp ta xét là hệ vật lý khí lý tưởng, từ phương trình trạng thái pV=NkT ta có:  (I.2.42) Thật ra, hệ thức đơn giản trên liên quan đến điều hiển nhiên là thăng giáng của năng lượng và của thể tích của hệ khí lý tưởng là không có tương quan  (I.2.43) I.2.3: Thăng giáng của nhiệt độ Trong thực tế sự thăng giáng của năng lượng không được đo trực tiếp, mà nhiệt độ được đo bằng nhiệt kế; năng lượng trung bình E và thể tích trung bình E và thể tích trung bình V của hệ có mối quan hệ với nhiệt độ của hệ. Vì như vậy, nhiệt độ T của hệ S là hàm theo E và V nên :  (I.2.44) Nhưng ta lại có:  (I.2.45) Và do:   Nên  (I.2.46) Và như vậy:  (I.2.47) Độ tương quan giữa nhiệt độ và thể tích được đánh giá bởi:  (I.2.48) Thật ra bằng cách thay biểu thức (I.2.47) bằng các đại lượng  Và  mà ta đã thấy ở (I.2.15) và (I.2.29), ta có:  (I.2.49) (theo kết quả ta đã có ở (I.2.39)) Điều này chứng tỏ rằng thăng giáng của nhiệt độ và của thể tích là không tương quan. Mặt khác, trong hệ thức (I.2.46), ta thấy các giá trị ,  và  đã được tính ở (I.2.15), (I.2.33), (I.2.27) nên ta có:  (I.2.50) I.3 Xác định momen tương quan như bài toán cơ bản của lý thuyết thăng giáng. Các hiện tượng vật lý quan sát được về mặt vĩ mô dsinh ra do thăng giáng chính là sự sai lệch hỗn loạn của các đại lượng vật lý khỏi các giá trị trung bình thống kê cân bằng của chúng. Ví dụ như sự tán xạ ánh sáng bởi các môi trường xảy ra do các thăng giáng mật độ gây ra do sự không đồng nhất trong không gian của chiết suất (hệ số khúc xạ); những thăng giáng của dòng trong mạch điện trong các mạch điện là nguyên nhân gây ra những tạp âm không khử được trong các thiết bị vô tuyến; độ lớn các thăng giáng điện và cơ trong các dụng cụ đo quyết định độ nhạy của chúng,… Đặc trưng định lượng các thăng giáng là momen tương quan. Trong trường hợp tổng quát, đối với n đại lượng vật lý khác nhau có thể viết dưới dạng:  (I.3.1) trong đó các chỉ số trên t và 0 có nghĩa là đại lượng đã cho được lấy tại các thời điểm khác nhau t và  trong nhiều trường hợp, các hiện tượng thăng giáng được phản ánh khá đầy đủ bởi momen tương quan bậc 2, hoặc ngắn gọn hơn là các tương quan bình phương, nghĩa là các đại lượng dạng:  (I.3.2) Trong đa số trường hợp, các hiện tượng thăng giáng được phản ánh khá đầy đủ bởi momen tương quan bậc 2, hoặc ngắn gọn hơn là các tương quan bình phương, nghĩa là các đại lượng dạng:  (I.3.3)  ;  (I.3.4) Trong số đó đại lượng quan trọng nhất là sự sai lệch bình phương trung bình , đôi khi còn được gọi ngắn gọn là “thăng giáng” và sai lệch bình phương trung bình tương đối hay “thăng giáng tương đối” được xác định như sau:  (I.3.5) Đối với các đại lượng vật lý khác nhau, có nhiều cách để tính các momen tương quan bình phương. Với các đại lượng chỉ phụ thuộc vò tốc độ hoặc xung lượng, việc tính các momen tương đối dễ dàng nhờ biểu thức tổng quát đối với xác suất có giá trị cho trước của xung lượng:  các trung bình bất kỳ, ví dụ ,  và  được tính bằng tích phân một lần đơn giản. Với các đại lượng phụ thuộc vào tọa độ, việc tìm momen tương quan như các trung bình theo phân bố Gibbs:  Không khó khăn hơn so với việc tính khí năng lượng tự do của chất khí hoặc chất lỏng thực. Vì thế để tính các tương quan, ta dùng các phương pháp khác nhau cho công thức tính các momen cao hơn. Trong một số trường hợp đơn giản nhất, các sai lệch bình phương trung bình của xung lượng được tính nhờ định lý Virian, còn các sai lệch bình phương trung bình của xung lượng được tính nhờ định lý phân bố đều của động năng. Ví dụ, theo định luật phân bố đều:  Suy ra: . Mà , do đó: (I.3.6) Theo định lý Virian đối với dao tử điều hòa có  thì . Ta cũng có , do đó . Do đó để tính độ lệch bình phương trung bình của dao động tử điều hòa, chỉ cần biết hệ số đàn hồi . I.4: Tính momen bình phương theo phương pháp Gibbs Cơ học thống kê của Gibbs cho phép rút ra những hệ thức tổng quát, liên hệ phương sai và nói chung là các tương quan bình phương của các tọa độ suy rộng vơi các giá trị trung bình của chúng khi có lực phụ tác động lên các tọa độ này. Như vậy, nếu biết sự phụ thuộc của  vào lực ngoài (dù chỉ bằng thực nghiệm) thì có thể tìm các đại lượng . Theo bổ đề thứ hai của Gibbs, đối với số hạng bất kỳ ta có:  (I.4.1) Nếu đại lượng  là hàm của tọa độ, thì có thể biểu diễn như toạ độ suy rộng mới  nào đó. Đại lượng a xuất hiện trong (I.4.1) được biểu diễn là lực phụ bên ngoài, tác động theo hướng tọa độ suy rộng q. Điều này có nghĩa là hàm Hamilton của hệ có dạng:  (I.4.2) Thực vậy, theo phương trình Hamilton:  (I.4.3) nghĩa là ngoài tác dụng của lực  hệ còn chịu của lực phụ -a. Thay  và H(X,a) từ (I.4.2) vào (I.4.1) với chú ý  ta được:  (I.4.4) Tương tự, trong trường hợp hàm tọa độ suy rộng  và , nếu đặt:  (I.4.5) Theo (I.4.1) ta có:  ;  (I.4.6) Mặt khác, trong (I.4.1) xét ,  ta có:  Nếu xét ,  thay vào (I.4.1) ta có:  Tóm lại:  (I.4.7) Công thức (I.4.4) và (I.4.7) cho phép ta tính các tương quan bình phương của các đại lượng vật lý bất kì, chỉ là hàm của các tọa độ nếu biết sự phụ thuộc của các giá trị trung bình của các đại lượng này vào các lực không đổi bên ngoài tác động lên chúng. Tương tự, có thể nhận được công thức liên hệ các momen tương quan bậc cao hơn đối với các đạo hàm của các giá trị trung bình của các giá trị trung bình của các tọa độ theo lực phụ . Đồng thời ta sẽ chỉ ra rằng phương pháp tổng quát được áp dụng để tính các momen tương quan không chỉ của tọa độ, mà cả của vận tốc. Giả thiết rằng đại lượng F trong (I.4.1) có ý nghĩa của vận tốc nào đó, tức là thay F bởi . Khi đó, theo (I.4.1) và (I.4.2) ta có:  (I.4.8) Tuy nhiên vận tốc trung bình của đại lượng bất kỳ F, lấy theo phân bố cân bằng luôn bằng không, vì:  Nhưng theo vật lý thống kê, ở trạng thái cân bằng nhiệt động thì , do đó:  (I.4.9) Từ (I.4.8) và (I.4.9) ta có:  Mặt khác, , do đó:  (I.4.10) Giả sử  và lưu ý rằng , khi đó . Thay vào (I.4.10) ta được:  Hay  Kết quả này chính là biểu thức (I.3.6) I.5: Xác định thăng giáng bằng phương pháp Gibbs 1. Dựa vào phân bố chính tắc Gibbs ta có thể tính được trung bình của bình phương và cả trị số của độ thăng giáng của một đại lượng vật lý F bất kỳ.  (I.5.1) Trong trường hợp đặc biệt khi mà đại lượng vật lý F chỉ phụ thuộc vào xung lượng của một hệ  thì bài toán tìm thăng giáng được giải đến cùng bằng cách lấy tích phân biểu thức  (I.5.2) Trong đó đại lượng  hoặc là đã biết từ thí nghiệm hoặc là được tínth theo công thức  (I.5.3) Còn trong trường hợp tổng quát, khi F phụ thuộc cả vào p lẫn q thì việc tính tích phân (I.5.1) rất khó khăn. 2. Trong những trường hợp mà ta không thể tính trực tiếp biểu thức (I.5.1), thì để xác định phương sai của các đại lượng nhiệt động , người ta xác ddnhj theo cách khác: người ta biểu thị phương sai của một đại lượng nhiệt động  theo một hàm nào đó của trị trung bình  mà ngườ ta thường đã biết trước từ thí nghiệm. cách đó thường được sử dụng trong trường hợp khi mà đại đại lượng vật lý F chỉ phụ thuộc vào tọa độ x của hệ: . Ta chứng minh rằng trong phân bố chính tắc có hệ thức sau đây:  (I.5.4) Thật vậy, bằng cách lấy vi phân công thức trị trung bình của đại lượng F  theo a, ta được:     Mặt khác ta có   Nên:  Ta lại có:  Do đó:  Vậy:  Hay:  Ta xét ví dụ sau: Giả sử có N phân tử khi nằm trong thể tích V giới hạn bởi xylanh và pittông có tác dụng của áp lực bên ngoài p (hình vẽ). Khi đó hàm Hamilton H(X,p) của chất khí có dạng sau đây: H(X,p) = H(X) + pV(X) (I.5.5) ở đây áp suất p được xem như thông số ngoài a tương ứng với thể tích V(X). áp dụng hệ thức (I.5.4), thay a bằng p và F(X) bằng V(X) ta sẽ có
Luận văn liên quan